Answer:
In cotransport, a single ATP-powered pump that transports a specific solute drives the active transport of several other solutes. Normally, sodium in waste is reabsorbed in the colon, maintaining constant levels in the body, but diarrhea expels waste so rapidly that re-absorption is not possible, and sodium levels fall precipitously. To treat this life threatening condition, patients are given a solution to drink containing high concentrations of salt and glucose. The solutes are taken up by sodium-glucose cotransporters on the surface of intestinal cells and passed through the cells into the blood. This simple treatment has lowered infant mortality worldwide.
It is called ACCOMMODATION. Accommodation refers to the mechanism by which the eye adjusts his optical power in order to focus properly on an object as the distance of the object varies. To achieve this, the shape of the lens has to be adjusted appropriately.
Multi cellular organisms like animals are eukaryotes
Answer:
What does cellular respiration due?
<h2>Cellular respiration releases stored energy in glucose molecules and converts it into a form of energy that can be used by cells.</h2>
Explanation:
<h2>What are the 7 steps of cellular respiration in order?</h2>
<h2>Overview of the steps of cellular respiration. Glycolysis. Six-carbon glucose is converted into two pyruvates (three carbons each). ATP and NADH are made.</h2>
...
<h2>Glycolysis. ... </h2><h2>Pyruvate oxidation. ... </h2><h2>Citric acid cycle. ... </h2><h2>Oxidative phosphorylation</h2>
<h2>Answer</h2>
<h2> Cellular respiration is a set of metabolic reactions and processes that take place in the cells of organisms to convert chemical energy from oxygen molecules[1] or nutrients into adenosine triphosphate (ATP), and then release waste products.[2] The reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy because weak high-energy bonds, in particular in molecular oxygen,[3] are replaced by stronger bonds in the products. Respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. The overall reaction occurs in a series of biochemical steps, some of which are redox reactions. Although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a living cell because of the slow, controlled release of energy from the series of reactions.Nutrients that are commonly used by animal and plant cells in respiration include sugar, amino acids and fatty acids, and the most common oxidizing agent providing most of the chemical energy is molecular oxygen (O2).[1] The chemical energy stored in ATP (the bond of its third phosphate group to the rest of the molecule can be broken allowing more stable products to form, thereby releasing energy for use by the cell) can then be used to drive processes requiring energy, including biosynthesis, locomotion or transport of molecules across cell membranes.</h2>