Answer for Q.1 = 4/9
Answer for Q2. = 2/3
Answer:
f(g(x)) = 2(x^2 + 2x)^2
f(g(x)) = 2x^4 + 8x^3 + 8x^2
Step-by-step explanation:
Given;
f(x) = 2x^2
g(x) = x^2 + 2x
To derive the expression for f(g(x)), we will substitute x in f(x) with g(x).
f(g(x)) = 2(g(x))^2
f(g(x)) = 2(x^2 + 2x)^2
Expanding the equation;
f(g(x)) = 2(x^2 + 2x)(x^2 + 2x)
f(g(x)) = 2(x^4 + 2x^3 + 2x^3 + 4x^2)
f(g(x)) = 2(x^4 + 4x^3 + 4x^2)
f(g(x)) = 2x^4 + 8x^3 + 8x^2
Hope this helps...
1=51
2=34
3= 95 (i think)
4=38
Answer:
start witg parentecees, then multiplication then addind and substracting
Step-by-step explanation:
2(x+10)+10-4+5 = 2x + 20 +10 -4 +5
2x+31 is the final answer
Answer:
4
step-by-step explanations