let's notice the tickmarks on the left and right sides, meaning those two sides are twins, and therefore equal, so the perimeter is simply 2.5+2.5+3.5+2.5 = 11 ft.
the trapezoid has an altitude/height of 2 ft, thus
![\bf \textit{area of a trapezoid}\\\\ A=\cfrac{h(a+b)}{2}~~ \begin{cases} a,b=\stackrel{bases}{parallel~sides}\\ h=height\\[-0.5em] \hrulefill\\ a=2.5\\ b=3.5\\ h=2 \end{cases}\implies A=\cfrac{2(2.5+3.5)}{2}\implies A=6](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Barea%20of%20a%20trapezoid%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7Bh%28a%2Bb%29%7D%7B2%7D~~%20%5Cbegin%7Bcases%7D%20a%2Cb%3D%5Cstackrel%7Bbases%7D%7Bparallel~sides%7D%5C%5C%20h%3Dheight%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20a%3D2.5%5C%5C%20b%3D3.5%5C%5C%20h%3D2%20%5Cend%7Bcases%7D%5Cimplies%20A%3D%5Ccfrac%7B2%282.5%2B3.5%29%7D%7B2%7D%5Cimplies%20A%3D6)
Answer:
Step-by-step explanation:
∠F=90°, FD = 63 feet, and DE = 71 feet.
That's a right angle triangle also.
measure of ∠E to the nearest degree
sin∠E = 63/71
sin∠E = 0.8873
∠E= sin^-1 0.8873
∠E= 62.5°
Answer:
? = 13.6
Step-by-step explanation:
Let unknown angle be x
so
tan x = p/b
tan x = 8/33
x =tan‐¹(8/33)
or, x = 13.62699486
so, x = 13.6
3 x 10^1 in standard notation is equal to 30