Answer:
A
Step-by-step explanation:
Well area of a triangle is

so,

The answer is 8
Take the homogeneous part and find the roots to the characteristic equation:

This means the characteristic solution is

.
Since the characteristic solution already contains both functions on the RHS of the ODE, you could try finding a solution via the method of undetermined coefficients of the form

. Finding the second derivative involves quite a few applications of the product rule, so I'll resort to a different method via variation of parameters.
With

and

, you're looking for a particular solution of the form

. The functions

satisfy


where

is the Wronskian determinant of the two characteristic solutions.

So you have




So you end up with a solution

but since

is already accounted for in the characteristic solution, the particular solution is then

so that the general solution is
Answer:
y = -7
Step-by-step explanation:
Slope: 0
y-intercept: (0,−7)
Since the line doesn't change up, down, right, or left, and it stays on the y-axis, that's how u get y = . The straight line runs along -7 . That's how u get -7 . so when u put it all together u get: y = -7 .
Hope that helps. Tried to explain the best I could :)