There would be enough room because if you do 60 times .375 (3 over 8) it would equal out to 22.5
I believe the answer is B, but I'm not 100% sure. :)
Answer:
Yes, result is significant ; PVALUE < α
Step-by-step explanation:
Given :
x = 536
n = sample size = 1012
Phat = x / n = 536 / 1012 = 0.5296 = 0.53
H0 : P0 = 0.5
H1 : P0 > 0.5
Test statistic :
(Phat - P0) ÷ sqrt[(P0(1 - P0)) / n]
1-P0 = 1 - 0.5 = 0.5
(0.53 - 0.5) ÷ sqrt[(0.5*0.5)/1012]
0.03 ÷ 0.0157173
= 1.9087
Pvalue :
Using the Pvalue from test statistic :
Pvalue = 0.02815
To test if result is significant :
α = 0.05
0.02815 < 0.05
Pvalue < α ; Hence, result is significant at α=0.05; Hence, we reject H0.
Answer:
Henri invested $ 4,500 in bonds and $ 19,500 in stocks.
Step-by-step explanation:
Given that Henri has $ 24000 invested in stocks and bonds, and the amount in stocks is $ 6000 more than three times the amount in bonds, to determine the amount that Henri invested in stocks (S) and the amount he invested in bonds (B), the following calculations must be performed:
6000 + 3B + B = 24000
3B + B = 24000 - 6000
4B = 18000
B = 18000/4
B = 4500
S = 6000 + 3x4500
S = 6000 + 13500
S = 19500
Thus, Henri invested $ 4,500 in bonds and $ 19,500 in stocks.