Answer:
6
Step-by-step explanation:
Answer:
24000 pieces.
Step-by-step explanation:
Given:
Side lengths of cube = 
The part of the truck that is being filled is in the shape of a rectangular prism with dimensions of 8 ft x 6 1/4 ft x 7 1/2 ft.
Question asked:
What is the greatest number of packages that can fit in the truck?
Solution:
First of all we will find volume of cube, then volume of rectangular prism and then simply divide the volume of prism by volume of cube to find the greatest number of packages that can fit in the truck.


Length = 8 foot, Breadth =
, Height =


The greatest number of packages that can fit in the truck = Volume of prism divided by volume of cube
The greatest number of packages that can fit in the truck = 
Thus, the greatest number of packages that can fit in the truck is 24000 pieces.
Answer:
Probability that the measure of a segment is greater than 3 = 0.6
Step-by-step explanation:
From the given attachment,
AB ≅ BC, AC ≅ CD and AD = 12
Therefore, AC ≅ CD = 
= 6 units
Since AC ≅ CD
AB + BC ≅ CD
2(AB) = 6
AB = 3 units
Now we have measurements of the segments as,
AB = BC = 3 units
AC = CD = 6 units
AD = 12 units
Total number of segments = 5
Length of segments more than 3 = 3
Probability to pick a segment measuring greater than 3,
= 
= 
= 0.6
Answer:
26.2
Step-by-step explanation:
PQ/QR = 8/16 = 0.5
tan(26.6) = 0.5
Where is the question to this or is this the answer