Answer:
A. The r²-value of the linear model is greater than 0.977
Step-by-step explanation:
A P E X
Answer:
Equation of the circle (x-3)²+(y-5)²=(6.4)²
x² -6x +9 +y² -10y +25 = 40.96
Step-by-step explanation:
<u><em>Step(i):-</em></u>
Given endpoints of diameter P(−2, 1) and Q(8, 9)
Centre of circle = midpoint of diameter
Centre = 
Centre (h, k) = (3 , 5)
<u><em>Step(ii):-</em></u>
The distance of two end points
PQ = 

PQ = √164 = 12.8
Diameter d = 2r
radius r = d/2
Radius r = 6.4
<u><em>Final answer:-</em></u>
Equation of the circle
(x-h)²+(y-k)² = r²
(x-3)²+(y-5)²=(6.4)²
x² -6x +9 +y² -10y +25 = 40.96
x² -6x +y² -10y = 40.96-34
x² -6x +y² -10y -7= 0
Answer:
Step-by-step explanation:
(x^4 + 2x^3 - 7x - 9) +
(x^5 - 2x^4 + 8x + 18)
x^5 - x^4 + 2x^3 + x + 9
Answer:
y = -3x + 7
Step-by-step explanation:
Choosing two points from the given table:
Let (x1, y1) = (-3, 16)
(x2, y2) = (-1, 10)
Plug these given values into the slope formula:
m = (y2 - y1)/(x2 - x1)
= (10 - 16) / (-1 - (-3))
= -6 / (-1 + 3)
= -6/2
= -3
Therefore, the slope is -3.
Next, choose one of the points and plug into the <u>point-slope form</u>:
Let's use (-1, 10) as (x1, y1):
y - y1 = m(x - x1)
y - 10 = -3(x - (-1))
y - 10 = -3(x + 1)
y - 10 = -3x - 3
Add 10 on both sides to isolate y:
y - 10 + 10 = -3x - 3 + 10
y = -3x + 7