The height of a rectangular pyramid is 30 cm.
volume of rectangular pyramid = (length x width x height) / 3
Given:
Volume = 900 cm³
Length = 10 cm
Width = 9 cm
Height = ?
V = lwh/3
900 cm³ = (10cm * 9cm * h)/3
900 cm³ * 3 = (90cm² * h)/3 * 3
2700 cm³ = 90cm² * h
2700 cm³/90cm² = 90cm² * h/90 cm²
30 cm = h
to check:
900 cm³ = (10 cm * 9 cm * 30 cm)/3
900 cm³ = 2700 cm³/3
900 cm³ = 900 cm³
Answer:
6th floor
Step-by-step explanation:
2-3+7
-1+7
6
Answer:
First option: cos(θ + φ) = -117/125
Step-by-step explanation:
Recall that cos(θ + φ) = cos(θ)cos(φ) - sin(θ)sin(φ)
If sin(θ) = -3/5 in Quadrant III, then cos(θ) = -4/5.
Since tan(φ) = sin(φ)/cos(φ), then sin(φ) = -7/25 and cos(φ) = 24/25 in Quadrant II.
Therefore:
cos(θ + φ) = cos(θ)cos(φ) - sin(θ)sin(φ)
cos(θ + φ) = (-4/5)(24/25) - (-3/5)(-7/25)
cos(θ + φ) = (-96/125) - (21/125)
cos(θ + φ) = -96/125 - 21/125
cos(θ + φ) = -117/125
Answer:
I think the answer is B. f(x) = -1/3x - 4
Step-by-step explanation:
Use the given functions to set up and simplify
4−16.
XF(x)=X
Fx
1 − 7 = −6
2 − 10 = −8
3 − 13 = −10
4 − 16 = −12
I think it’s B but I’m not sure. It seems (most likely) to be newspaper