Third term = t3 = ar^2 = 444 eq. (1)
Seventh term = t7 = ar^6 = 7104 eq. (2)
By solving (1) and (2) we get,
ar^2 = 444
=> a = 444 / r^2 eq. (3)
And ar^6 = 7104
(444/r^2)r^6 = 7104
444 r^4 = 7104
r^4 = 7104/444
= 16
r2 = 4
r = 2
Substitute r value in (3)
a = 444 / r^2
= 444 / 2^2
= 444 / 4
= 111
Therefore a = 111 and r = 2
Therefore t6 = ar^5
= 111(2)^5
= 111(32)
= 3552.
<span>Therefore the 6th term in the geometric series is 3552.</span>
The answer after subtracting the following equation is x= -8/5
Step-by-step explanation:
- -2x+7y=10 ----- eq(1) , 3x + 7y =2------ eq(2)
- subtracting eq 2 from eq 1 we get
<u />
<span> is the answer a Polygon</span>
The inverse, converse and contrapositive of a statement are used to determine the true values of the statement
<h3>How to determine the inverse, converse and contrapositive</h3>
As a general rule, we have:
If a conditional statement is: If p , then q .
Then:
- Inverse -> If not p , then not q .
- Converse -> If q , then p .
- Contrapositive -> If not q , then not p .
Using the above rule, we have:
<u>Statement 1</u>
- Inverse: If a parallelogram does not have a right angle, then it is not a rectangle.
- Converse: If a parallelogram is a rectangle, then it has a right angle.
- Contrapositive: If a parallelogram is a not rectangle, then it does not have a right angle.
All three statements above are true
<u>Statement 2</u>
- Inverse: If two angles of one triangle are not congruent to two angles of another, then the third angles are not congruent.
- Converse: If the third angles of two triangle are congruent, then the two angles are congruent to two angles of another
- Contrapositive: If the third angles of two triangle are not congruent, then the two angles are not congruent to two angles of another
All three statements above are also true
Read more about conditional statements at:
brainly.com/question/11073037
Answer:
p=3 , q=1 , r=2
Step-by-step explanation:
1176=2*2*2*3*7*7
1176=(2^3)*(3^1)*(7^2)
given that 1176 = (2^p)*(3^q)*(7^r)
Comparing Equation 1 & 2
we get p=3 , q=1, r=2