Answer: While I don’t have the picture to actually know the answer I will explain how to get it.
Step-by-step explanation:
1. If the shapes are on a grid count the amount of grid squares that are located between each end point of the shape. If it’s not on a grid use a ruler to measure the side lengths. You will need to find out the side amounts for both shapes L and S.
2. From there if the L shape is SMALLER than the S shape, then take the S shape’s sides and divide it by the L shape’s sides, and whatever number you get from each of your division problems will be your scale factor. BUT If the L shape is BIGGER than the S shape then easiest way to find out your scale factor is to take the last scale factor you got and convert it into a fraction. For example, if you got 3 then it would be 1/3. Hope this helped!
Answer:
hypothesis
Step-by-step explanation:
If <em>hypothesis</em> then <em>conclusion</em>
<span>
Let's analyze Hannah's work, step-by-step, to see if she made any mistakes. </span>In Step 1, Hannah wrote

<span> as the sum of two separate derivatives </span>

<span>using the </span><span>sum rule.
</span>
This step is perfectly fine. In Step 2,

was kept as it is, and

was rewritten as

using the constant rule.Indeed, according to the constant rule, the derivative of a constant number is equal to zero.
This step is perfectly fine. In Step 3,

was rewritten as

supposedly using the constant multiple rule.
The problem is that according to the constant multiple rule,

should be rewritten as

and not as

.
<span>
Therefore, Hannah made a mistake in this step.</span>
Answer:
someone had the same exact question i just helped him on it sub 4 for x and 1 for h
Step-by-step explanation: