1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Roman55 [17]
3 years ago
9

PLEASE CAN SOMEONE HELP????

Mathematics
2 answers:
schepotkina [342]3 years ago
6 0

Answer:

figure it out dummy

Step-by-step explanation:

MariettaO [177]3 years ago
5 0

Answer:

A) Side EG

Step-by-step explanation:

You might be interested in
Which expression has the same value as 97.6 – (-77.8)?
11111nata11111 [884]

Answer:

97.6 + 77.8

Step-by-step explanation:

97.6-(-77.8)

= 97.6+77.8

97.6+77.8= 175.4

97.6-(-77.8) = 175.4

7 0
3 years ago
Please help &lt; &lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;33333333 TYY<br> -20 -8 + (-12)
Montano1993 [528]

Answer:

-30

Step-by-step explanation:

-20-8=-28

-28-12

=-30

5 0
2 years ago
16)<br> (lly-32)<br> (6x + 7)<br> What’s X
Y_Kistochka [10]

This has alot of information missing. Can you please repost this with more detailed information? Thanks.

6 0
3 years ago
Please help!!<br> Write a matrix representing the system of equations
frozen [14]

Answer:

(4, -1, 3)

Step-by-step explanation:

We have the system of equations:

\left\{        \begin{array}{ll}            x+2y+z =5 \\    2x-y+2z=15\\3x+y-z=8        \end{array}    \right.

We can convert this to a matrix. In order to convert a triple system of equations to matrix, we can use the following format:

\begin{bmatrix}x_1& y_1& z_1&c_1\\x_2 & y_2 & z_2&c_2\\x_3&y_2&z_3&c_3 \end{bmatrix}

Importantly, make sure the coefficients of each variable align vertically, and that each equation aligns horizontally.

In order to solve this matrix and the system, we will have to convert this to the reduced row-echelon form, namely:

\begin{bmatrix}1 & 0& 0&x\\0 & 1 & 0&y\\0&0&1&z \end{bmatrix}

Where the (x, y, z) is our solution set.

Reducing:

With our system, we will have the following matrix:

\begin{bmatrix}1 & 2& 1&5\\2 & -1 & 2&15\\3&1&-1&8 \end{bmatrix}

What we should begin by doing is too see how we can change each row to the reduced-form.

Notice that R₁ and R₂ are rather similar. In fact, we can cancel out the 1s in R₂. To do so, we can add R₂ to -2(R₁). This gives us:

\begin{bmatrix}1 & 2& 1&5\\2+(-2) & -1+(-4) & 2+(-2)&15+(-10) \\3&1&-1&8 \end{bmatrix}\\\Rightarrow\begin{bmatrix}1 & 2& 1&5\\0 & -5 & 0&5 \\3&1&-1&8 \end{bmatrix}

Now, we can multiply R₂ by -1/5. This yields:

\begin{bmatrix}1 & 2& 1&5\\ -\frac{1}{5}(0) & -\frac{1}{5}(-5) & -\frac{1}{5}(0)& -\frac{1}{5}(5) \\3&1&-1&8 \end{bmatrix}\\\Rightarrow\begin{bmatrix}1 & 2& 1&5\\ 0 & 1 & 0& -1 \\3&1&-1&8 \end{bmatrix}

From here, we can eliminate the 3 in R₃ by adding it to -3(R₁). This yields:

\begin{bmatrix}1 & 2& 1&5\\ 0 & 1 & 0& -1 \\3+(-3)&1+(-6)&-1+(-3)&8+(-15) \end{bmatrix}\\\Rightarrow\begin{bmatrix}1 & 2& 1&5\\ 0 & 1 & 0& -1 \\0&-5&-4&-7 \end{bmatrix}

We can eliminate the -5 in R₃ by adding 5(R₂). This yields:

\begin{bmatrix}1 & 2& 1&5\\ 0 & 1 & 0& -1 \\0+(0)&-5+(5)&-4+(0)&-7+(-5) \end{bmatrix}\\\Rightarrow\begin{bmatrix}1 & 2& 1&5\\ 0 & 1 & 0& -1 \\0&0&-4&-12 \end{bmatrix}

We can now reduce R₃ by multiply it by -1/4:

\begin{bmatrix}1 & 2& 1&5\\ 0 & 1 & 0& -1 \\ -\frac{1}{4}(0)&-\frac{1}{4}(0)&-\frac{1}{4}(-4)&-\frac{1}{4}(-12) \end{bmatrix}\\\Rightarrow\begin{bmatrix}1 & 2& 1&5\\ 0 & 1 & 0& -1 \\0&0&1&3 \end{bmatrix}

Finally, we just have to reduce R₁. Let's eliminate the 2 first. We can do that by adding -2(R₂). So:

\begin{bmatrix}1+(0) & 2+(-2)& 1+(0)&5+(-(-2))\\ 0 & 1 & 0& -1 \\0&0&1&3 \end{bmatrix}\\\Rightarrow\begin{bmatrix}1 & 0& 1&7\\ 0 & 1 & 0& -1 \\0&0&1&3 \end{bmatrix}

And finally, we can eliminate the second 1 by adding -(R₃):

\begin{bmatrix}1 +(0)& 0+(0)& 1+(-1)&7+(-3)\\ 0 & 1 & 0& -1 \\0&0&1&3 \end{bmatrix}\\\Rightarrow\begin{bmatrix}1 & 0& 0&4\\ 0 & 1 & 0& -1 \\0&0&1&3 \end{bmatrix}

Therefore, our solution set is (4, -1, 3)

And we're done!

3 0
3 years ago
Nathan boards an elevator in the lobby that is headed up at 160 meters per minute. Meanwhile, 210 meters above, Joey boards an a
Vesna [10]

Let time be t , distance be d

  • 160t=d-(1)
  • 230t=210-d-(2)

Put value in eq(2)

\\ \rm\longmapsto 230t=210-(160t)

\\ \rm\longmapsto 70t=210

\\ \rm\longmapsto t=30min

8 0
3 years ago
Other questions:
  • What measure of center best represents the data set? Drag and drop the correct answer into the box. Data Set Best Measure of Cen
    15·2 answers
  • How much cardboard needed to construct a rectangular prism measuring 15 inches by 13 inches by 7 inches
    11·1 answer
  • The function is the quadratic function y =-=x​
    12·1 answer
  • The sum of two numbers is 52. If twice the smaller number is subtracted from the larger number, the result is 13. Find the two n
    8·1 answer
  • What does Buksa find?
    9·1 answer
  • The cost in dollars to print n books is 500 + 10n.
    5·2 answers
  • What is square root of square root 81​
    14·2 answers
  • What must NOT be included in an expression?
    12·2 answers
  • Please help me with this please if you don’t know don’t answer is 13 points
    11·1 answer
  • F(x)=x^2-5 and g(x)=3x+1 then f(g(2))
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!