Answer:
A rational number is a number that can be express as the ratio of two integers. A number that cannot be expressed that way is irrational. ... However, numbers like √2 are irrational because it is impossible to express √2 as a ratio of two integers.
The perfect squares are the squares of the whole numbers: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100 … Here are the square roots of all the perfect squares from 1 to 100. 1.
Option (4.) is the answer angel TRS......
Answer:
0.9177
Step-by-step explanation:
let us first represent the two failure modes with respect to time as follows
R₁(t) for external conditions
R₂(t) for wear out condition ( Wiebull )
Now,

where t = time in years = 1,
n = failure rate constant = 0.07
Also,

where t = time in years = 1
where Q = characteristic life in years = 10
and B = the shape parameter = 1.8
Substituting values into equation 1

Substituting values into equation 2

let the <em>system reliability </em>for a design life of one year be Rs(t)
hence,
Rs(t) = R1(t) * R2(t)
t = 1
![Rs(1) = [e^{-0.07} ] * [e^{-0.0158} ] = 0.917713](https://tex.z-dn.net/?f=Rs%281%29%20%3D%20%5Be%5E%7B-0.07%7D%20%5D%20%2A%20%5Be%5E%7B-0.0158%7D%20%5D%20%3D%200.917713)
Rs(1) = 0.9177 (approx to four decimal places)
Answer: the answer will be selection
If you have learned how to find the line of best fit manually, then you can do it that way. Perhaps you may want to just find a line that can connect at least two of the points and I believe that that line will be able to represent the other points because, in general, the points are pretty close to one another.
If you don't want to do it manually and have a graphing calculator (which I recommend) then you can use that to find the line of best fit (and if you want then you can see how precise your points are with your r^2 value). Or there is a website (http://illuminations.nctm.org/Activity.aspx?id=4186), which you can use to help you to find the equation of that particular line.
Once you have that done, then you can substitute 2009 for the x value in the equation and then see what y value the equation produces. That will then be your answer :)