1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Crazy boy [7]
3 years ago
14

Which number has an absolute value greater than 4?

Mathematics
1 answer:
pav-90 [236]3 years ago
5 0

Answer:

0

Step-by-step explanation:

Sorry if this doesn't help much and if its wrong, but maybe you could mark this as brainly? Have a wonderful day!

You might be interested in
If the length of the base of a triangle is
Anarel [89]

Answer:

d

Step-by-step explanation:

the answer is 12% decrease in area

5 0
3 years ago
The Marshall Island goby, the world's smallest fish, measures .47 inch. The striped bass, an American sport fish, is about 25.5
OLEGan [10]
150 inches because i say it is because i just need the points to ask another question
6 0
3 years ago
Read 2 more answers
interpret r(t) as the position of a moving object at time t. Find the curvature of the path and determine thetangential and norm
Igoryamba

Answer:

The curvature is \kappa=1

The tangential component of acceleration is a_{\boldsymbol{T}}=0

The normal component of acceleration is a_{\boldsymbol{N}}=1 (2)^2=4

Step-by-step explanation:

To find the curvature of the path we are going to use this formula:

\kappa=\frac{||d\boldsymbol{T}/dt||}{ds/dt}

where

\boldsymbol{T}} is the unit tangent vector.

\frac{ds}{dt}=|| \boldsymbol{r}'(t)}|| is the speed of the object

We need to find \boldsymbol{r}'(t), we know that \boldsymbol{r}(t)=cos \:2t \:\boldsymbol{i}+sin \:2t \:\boldsymbol{j}+ \:\boldsymbol{k} so

\boldsymbol{r}'(t)=\frac{d}{dt}\left(cos\left(2t\right)\right)\:\boldsymbol{i}+\frac{d}{dt}\left(sin\left(2t\right)\right)\:\boldsymbol{j}+\frac{d}{dt}\left(1)\right\:\boldsymbol{k}\\\boldsymbol{r}'(t)=-2\sin \left(2t\right)\boldsymbol{i}+2\cos \left(2t\right)\boldsymbol{j}

Next , we find the magnitude of derivative of the position vector

|| \boldsymbol{r}'(t)}||=\sqrt{(-2\sin \left(2t\right))^2+(2\cos \left(2t\right))^2} \\|| \boldsymbol{r}'(t)}||=\sqrt{2^2\sin ^2\left(2t\right)+2^2\cos ^2\left(2t\right)}\\|| \boldsymbol{r}'(t)}||=\sqrt{4\left(\sin ^2\left(2t\right)+\cos ^2\left(2t\right)\right)}\\|| \boldsymbol{r}'(t)}||=\sqrt{4}\sqrt{\sin ^2\left(2t\right)+\cos ^2\left(2t\right)}\\\\\mathrm{Use\:the\:following\:identity}:\quad \cos ^2\left(x\right)+\sin ^2\left(x\right)=1\\\\|| \boldsymbol{r}'(t)}||=2\sqrt{1}=2

The unit tangent vector is defined by

\boldsymbol{T}}=\frac{\boldsymbol{r}'(t)}{||\boldsymbol{r}'(t)||}

\boldsymbol{T}}=\frac{-2\sin \left(2t\right)\boldsymbol{i}+2\cos \left(2t\right)\boldsymbol{j}}{2} =\sin \left(2t\right)+\cos \left(2t\right)

We need to find the derivative of unit tangent vector

\boldsymbol{T}'=\frac{d}{dt}(\sin \left(2t\right)\boldsymbol{i}+\cos \left(2t\right)\boldsymbol{j}) \\\boldsymbol{T}'=-2\cdot(\sin \left(2t\right)\boldsymbol{i}+\cos \left(2t\right)\boldsymbol{j})

And the magnitude of the derivative of unit tangent vector is

||\boldsymbol{T}'||=2\sqrt{\cos ^2\left(x\right)+\sin ^2\left(x\right)} =2

The curvature is

\kappa=\frac{||d\boldsymbol{T}/dt||}{ds/dt}=\frac{2}{2} =1

The tangential component of acceleration is given by the formula

a_{\boldsymbol{T}}=\frac{d^2s}{dt^2}

We know that \frac{ds}{dt}=|| \boldsymbol{r}'(t)}|| and ||\boldsymbol{r}'(t)}||=2

\frac{d}{dt}\left(2\right)\: = 0 so

a_{\boldsymbol{T}}=0

The normal component of acceleration is given by the formula

a_{\boldsymbol{N}}=\kappa (\frac{ds}{dt})^2

We know that \kappa=1 and \frac{ds}{dt}=2 so

a_{\boldsymbol{N}}=1 (2)^2=4

3 0
3 years ago
A LARGE PIZZA AT TONY'S PIZZERIA IS A CIRCLE WITH
AfilCa [17]
You already know what it is cuh
5 0
3 years ago
Read 2 more answers
A Norman window is a window with a semi-circle on top of regular rectangular window. (See the picture.) What should be the dimen
Vikki [24]

Answer:

bottom side (a) = 3.36 ft

lateral side (b) = 4.68 ft

Step-by-step explanation:

We have to maximize the area of the window, subject to a constraint in the perimeter of the window.

If we defined a as the bottom side, and b as the lateral side, we have the area defined as:

A=A_r+A_c/2=a\cdot b+\dfrac{\pi r^2}{2}=ab+\dfrac{\pi}{2}\left (\dfrac{a}{2}\right)^2=ab+\dfrac{\pi a^2}{8}

The restriction is that the perimeter have to be 12 ft at most:

P=(a+2b)+\dfrac{\pi a}{2}=2b+a+(\dfrac{\pi}{2}) a=2b+(1+\dfrac{\pi}{2})a=12

We can express b in function of a as:

2b+(1+\dfrac{\pi}{2})a=12\\\\\\2b=12-(1+\dfrac{\pi}{2})a\\\\\\b=6-\left(\dfrac{1}{2}+\dfrac{\pi}{4}\right)a

Then, the area become:

A=ab+\dfrac{\pi a^2}{8}=a(6-\left(\dfrac{1}{2}+\dfrac{\pi}{4}\right)a)+\dfrac{\pi a^2}{8}\\\\\\A=6a-\left(\dfrac{1}{2}+\dfrac{\pi}{4}\right)a^2+\dfrac{\pi a^2}{8}\\\\\\A=6a-\left(\dfrac{1}{2}+\dfrac{\pi}{4}-\dfrac{\pi}{8}\right)a^2\\\\\\A=6a-\left(\dfrac{1}{2}+\dfrac{\pi}{8}\right)a^2

To maximize the area, we derive and equal to zero:

\dfrac{dA}{da}=6-2\left(\dfrac{1}{2}+\dfrac{\pi}{8}\right )a=0\\\\\\6-(1-\pi/4)a=0\\\\a=\dfrac{6}{(1+\pi/4)}\approx6/1.78\approx 3.36

Then, b is:

b=6-\left(\dfrac{1}{2}+\dfrac{\pi}{4}\right)a\\\\\\b=6-0.393*3.36=6-1.32\\\\b=4.68

3 0
3 years ago
Other questions:
  • The perimeter of a rectangle is 20 cm. The length is 7 cm. What is the area?
    14·1 answer
  • How will you solve this?
    11·1 answer
  • What is the scientific notation of the number 14 100 000
    14·1 answer
  • Please help and show workings
    14·1 answer
  • Which of the following is a solution to the inequality below?<br> j&gt; 8
    13·1 answer
  • Martey drew a model of the shool library
    15·1 answer
  • Robin braided g inches of a friendship bracelet. Olivia braided 12 less than 1/3 the number of inches Robin braided. Select all
    8·1 answer
  • Please help me in this Pythagoras theorem only part (d)​
    12·1 answer
  • Express the decimal as a percent. 1.276<br><br> 60 points.
    12·1 answer
  • Please solve by BODMAS rule ​
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!