Answer:
We can have two cases.
A quadratic function where the leading coefficient is larger than zero, in this case the arms of the graph will open up, and it will continue forever, so the maximum in this case is infinite.
A quadratic function where the leading coefficient is negative. In this case the arms of the graph will open down, then the maximum of the quadratic function coincides with the vertex of the function.
Where for a generic function:
y(x) = a*x^2 + b*x + c
The vertex is at:
x = -a/2b
and the maximum value is:
y(-a/2b)
Answer:
2688x^2 + 3640x + 1225
Step-by-step explanation:
multiply the expression
Discrimination 100 the real answer is that and it will not make since at dirt but it is have a good day