Answer:
to find V in this equation
4 = -6 + V
V = 10
hope it helps
The answer to this problem is x=210
Put x = -2 and y = 5 to the expression.

![\left[3\cdot(-2)^3(5)^{-2}\right]^2=\left[3(-8)\cdot\dfrac{1}{5^2}\right]^2=\left(-24\cdot\dfrac{1}{25}\right)^2=\left(-\dfrac{24}{25}\right)^2\\\\=\dfrac{24^2}{25^2}=\dfrac{576}{625}](https://tex.z-dn.net/?f=%5Cleft%5B3%5Ccdot%28-2%29%5E3%285%29%5E%7B-2%7D%5Cright%5D%5E2%3D%5Cleft%5B3%28-8%29%5Ccdot%5Cdfrac%7B1%7D%7B5%5E2%7D%5Cright%5D%5E2%3D%5Cleft%28-24%5Ccdot%5Cdfrac%7B1%7D%7B25%7D%5Cright%29%5E2%3D%5Cleft%28-%5Cdfrac%7B24%7D%7B25%7D%5Cright%29%5E2%5C%5C%5C%5C%3D%5Cdfrac%7B24%5E2%7D%7B25%5E2%7D%3D%5Cdfrac%7B576%7D%7B625%7D)
explanation

Answer:
x=7, y= 8
Step-by-step explanation:
x+y=15
x+2y=23
Subtract the first equation from the second equation to eliminate x
x+2y=23
-x-y=-15
--------------------
y = 8
Now we can find x
x+y = 15
x+8 = 15
Subtract 8 from each side
x+8-8=15-8
x = 7