B.) is the answer........
.because the object is in axonometry, and the front view will be a square
Answer:
slope=6/5
Step-by-step explanation:
The formula for finding the slope is y1-y2/x1-x2=slope. So if we substitute in the numbers from you question, it would be (-3-3)/(-2-3)=slope
(-3-3)/(-2-3)=slope
-6/-5=slope
6/5=slope
Answer:

Step-by-step explanation:
Let 
![m=(y^3)^{\frac{1}{2}}\\\\m=y^{3\times \frac{1}{2}}\ \ \ \ \ \ \ \ \ [as\ (x^a)^b=x^{ab}]\\\\m=y^{\frac{3}{2}](https://tex.z-dn.net/?f=m%3D%28y%5E3%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%5C%5C%5C%5Cm%3Dy%5E%7B3%5Ctimes%20%5Cfrac%7B1%7D%7B2%7D%7D%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5Bas%5C%20%28x%5Ea%29%5Eb%3Dx%5E%7Bab%7D%5D%5C%5C%5C%5Cm%3Dy%5E%7B%5Cfrac%7B3%7D%7B2%7D)
<span>40% of 1000000 is 400000. </span>
Answer:
<h3>Graph 3</h3>
Line starting at x = -2
- <u>Domain</u>: x ≥ -2
- <u>Range</u>: y ≥ 0
<h3>Graph 4</h3>
Vertical line
- <u>Domain</u>: x = 3
- <u>Range</u>: y = any real number
<h3>Graph 5</h3>
Quadratic function with negative leading coefficient and max value of 3
- <u>Domain</u>: x = any real number
- <u>Range</u>: y ≤ 3
<h3>Graph 6</h3>
Curve with non-negative domain and min value of -2
- <u>Domain</u>: x ≥ 0
- <u>Range</u>: y ≥ -2
<h3>Graph 7</h3>
Line with no restriction
- <u>Domain</u>: x = any real number
- <u>Range</u>: y = any real number
<h3>Graph 8</h3>
Quadratic function with positive leading coefficient and min value of 4
- <u>Domain</u>: x = any real number
- <u>Range</u>: y ≥ 4
<h3>Graph 9</h3>
Parabola with restriction at x = -4
- <u>Domain</u>: x = any real number except -4
- <u>Range</u>: y = any real number
<h3>Graph 10</h3>
Square root function with star point (2, 0)
- <u>Domain</u>: x ≥ 2
- <u>Range</u>: y ≥ 0