1.
D
2.
D
3.
A and D
4.
Didn't Understand
retype in comment and send
 
        
                    
             
        
        
        
The question is incomplete. The complete question is as follows:
Solve for X. Assume X is a 2x2 matrix and I denotes the 2x2 identity matrix. Do not use decimal numbers in your answer. If there are fractions, leave them unevaluated. 
· X·
 =<em>I</em>.
First, we have to identify the matrix <em>I. </em>As it was said, the matrix is the identiy matrix, which means
<em>I</em> = 
 
So, 
· X·
 =  ![\left[\begin{array}{ccc}1&0\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D)
Isolating the X, we have
X·
= 
 -  ![\left[\begin{array}{ccc}1&0\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D)
Resolving:
X·
= ![\left[\begin{array}{ccc}2-1&8-0\\-6-0&-9-1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2-1%268-0%5C%5C-6-0%26-9-1%5Cend%7Barray%7D%5Cright%5D)
X·
=![\left[\begin{array}{ccc}1&8\\-6&-10\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%268%5C%5C-6%26-10%5Cend%7Barray%7D%5Cright%5D)
Now, we have a problem similar to A.X=B. To solve it and because we don't divide matrices, we do X=A⁻¹·B. In this case,
X=
⁻¹·![\left[\begin{array}{ccc}1&8\\-6&-10\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%268%5C%5C-6%26-10%5Cend%7Barray%7D%5Cright%5D)
Now, a matrix with index -1 is called Inverse Matrix and is calculated as: A . A⁻¹ = I.
So, 
·
=![\left[\begin{array}{ccc}1&0\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D)
9a - 3b = 1
7a - 6b = 0
9c - 3d = 0
7c - 6d = 1
Resolving these equations, we have a=
; b=
; c=
 and d=
. Substituting:
X= 
·![\left[\begin{array}{ccc}1&8\\-6&-10\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%268%5C%5C-6%26-10%5Cend%7Barray%7D%5Cright%5D)
Multiplying the matrices, we have
X=![\left[\begin{array}{ccc}\frac{8}{11} &\frac{26}{11} \\\frac{39}{11}&\frac{198}{11}  \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B8%7D%7B11%7D%20%26%5Cfrac%7B26%7D%7B11%7D%20%5C%5C%5Cfrac%7B39%7D%7B11%7D%26%5Cfrac%7B198%7D%7B11%7D%20%20%5Cend%7Barray%7D%5Cright%5D)
 
        
             
        
        
        
Answer:
12
Step-by-step explanation:
 
        
                    
             
        
        
        
Answer:
y = 
 x + 3
Step-by-step explanation:
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
y = 
 x + 4 ← is in slope- intercept form
with slope m = 
Parallel lines have equal slopes , then
y = 
 x + c ← is the partial equation
To find c substitute (6, 5) into the partial equation
5 = 2 + c ⇒ c = 5 - 2 = 3
y = 
 x + 3 ← equation of parallel line
 
        
             
        
        
        
Answer:

Step-by-step explanation:
Given
Represent Boys with B and Girls with G


Required
Find the probability or having 1 boy 2 girls
Since the order is not important, the probability is calculated as follows;

Substitute 
 for P(B) and P(G)



<em>Hence, the fractional probability is </em>
<em></em>
<em></em>