<span>a bird flying from a tree</span>
Answer:
1. Part A: No
2. Part B: Yes
3: Part C : Yes
4: Part D : No
Explanation:
1) Part A: Facilitated diffusion of glucose into a muscle cell:
No; sodium ion co - transport is required for active transport of glucose but not for facilitated diffusion of glucose
2) Part B: Active transport of dietary phenylalanine across the intestinal mucosa:
Yes; co - transport of sodium ions drives the inward movement of amino acids and can only occur if sodium ions are actively pumped back out again.
3) Part C: Uptake of potassium ions by red blood cells:
Yes; uptake of potassium ions can occur only via a pump that couples the inward pumping of potassium ions to the outward pumping of sodium ions.
4) Part D: Active uptake of lactose by the bacteria in your intestine
No; active uptake of sugars and amino acids in bacteria is driven by a proton gradient.
With shorter necks, giraffe ancestors could not reach food-containing branches on tall trees. This resulted in the directional selection of giraffes with longer necks.
<h3>
Why is choosing a direction necessary? </h3>
It nearly appears obvious that the giraffe's long neck developed as a result of a lack of food in the lower branches of trees. The giraffe has a significant advantage because it is taller than any other mammal and can feed where few others can.
When compared to modern giraffes, the giraffe's ancient predecessors had a shorter neck. The plants that were lying at a higher level were inaccessible to them. Giraffe phenotypes have changed in various ways, and now have long necks to reach vegetation that is higher up. The extreme form is chosen above other features in directional selection. It was decided to choose the long-necked giraffe over the short-necked.
To know more about direction selection for longer necked giraffes visit:
brainly.com/question/3738222
#SPJ4