Answer:
b = 18
Step-by-step explanation:
From an external point, the products of distances to the near circle intercept and the far circle intercept are the same. For a tangent, such as AC, point A is both the near and far intercept point, so that product is the square of the length of AC.
(AC)² = (CG)(CV)
b² = 12·27 = 324 . . . . substitute known values
b = √324 . . . . . . . . . . take the square root
b = 18
Answer:
D) -2
Step-by-step explanation:
to identify the slope of a line written in slope-intercept form, it would be
the coefficient of the 'x' term
Use the formula
p=4 x s
Plug in 24 for x
p=4(24)
P=96
To determine the ratio, we need to know the formula of the area of an hexagon in terms of the length of its sides. We cannot directly conclude that the ratio would be 3, the same as that of the ratio of the lengths of the side, since it may be that the relationship of the area and length is not equal. The area of a hexagon is calculated by the expression:
A = (3√3/2) a^2
So, we let a1 be the length of the original hexagon and a2 be the length of the new hexagon.
A2/A1 = (3√3/2) a2^2 / (3√3/2) a1^2
A2/A1 = (a2 / a1)^2 = 3^2 = 9
Therefore, the ratio of the areas of the new and old hexagon would be 9.
B is one.
A < C and D are rational
Im thinking about E. It looks like a recurring decimal at first sight but I think its irrational.