Answer:
We obtain same product by both the methods.
Step-by-step explanation:
We are given the following in the question:
Commutative property of multiplication:

Different ways to find the product:
1. First way

2. Second way

We get the same product for both the calculations.
9514 1404 393
Answer:
(x, y) = (-1, -16) or (3, 0)
Step-by-step explanation:
Perhaps you want to solve the system of equations ...
- y = x^2 +2x -15
- y -4x = -12
Substituting the first expression for y into the second equation gives ...
x^2 +2x -15 -4x = -12
x^2 -2x -3 = 0 . . . . . . . . add 12
(x -3)(x +1) = 0 . . . . . . . factor
Solutions are the values of x that make the factors zero: x = 3, x = -1.
The corresponding values of y are ...
y = -12 +4x
y = -12 +4{-1, 3} = -12 +{-4, 12} = {-16, 0}
The solutions to the system are ...
(x, y) = (-1, -16) or (3, 0)
X=4
cross multiply
3x=12
x=4
Read the question carefully: it costs 4 tokens to park in a garage for an hour.
We will apply the unitary method to solve this question
It costs 4 tokens to park in a garage for 1 hour
Find how many hours can park in a garage for 1 token
If it costs 4 token to park in a garage for 1 hour
Then it will cost 1 token to park in a garage for 1/4 hour
Step2:
With 20 token we can park in a garage for (1/4) * 20
= 5 hours
So, we can park for 5 hours with 20 tokens.
Another method
If we take twenty tokens and divide them into groups of four, we will find that we are left with five groups of tokens. Each group of tokens represents an hour of parking time. This will give us five groups, or five hours, total.
So, we can park for 5 hours with 20 tokens
The answer is that s = 55/42.
Here's how to solve it