Answer:
C.
Step-by-step explanation:


Given:
The equations of parabolas in the options.
To find:
The steepest parabola.
Solution:
We know that, if a parabola is defined as

Then, the greater absolute value of n, the steeper the parabola.
It can be written as


where
, the smaller absolute value of p, the steeper the parabola.
Now, find the value of |p| for eac equation
For option A, 
For option B, 
For option C, 
For option D, 
Since, the equation is option A has smallest value of |p|, therefore, the equation
represents the steepest parabola.
Hence, the correct option is A.
Answer:
The answer is D.
Step-by-step explanation:
(^3-^2+2)D=0
D^2+D^2+2D=0
2D^2+2D=0
a = 2; b = 2; c = 0;
Δ = b2-4ac
Δ = 22-4·2·0
Δ = 4
D1=−b−Δ√2aD2=−b+Δ√2a
Δ−−√=4√=2
D1=−b−Δ√2a=−(2)−22∗2=−44=−1
D2=−b+Δ√2a=−(2)+22∗2=04=0