Answer:
The effects of climate change may be associated with the increased incidence of <em>V. vulnificus</em> infection
Explanation:
<em>Vibrio vulnificus</em> is a harmful bacterium that causes a serious disease due to eating contaminated seafood, which is the main cause of seafood-related deaths in the USA. <em>V. vulnificus</em> is naturally present in the flora of coastal waters around the world and this bacterium has been isolated from a variety of seafood (e.g.., fish, oysters, shrimp, etc). Epidemiologic studies have shown that the incidence of <em>V. vulnificus</em> infection has increased dramatically since 1996. During this same period, climate change has been responsible for the increase in salinity and temperature of the coastal waters (i.e., the natural habitat of this bacterium). In consequence, it is reasonable to suppose that the change in climatic conditions may be associated with the increased incidence of <em>V. vulnificus</em> infection.
Janelle should talk to any trusted adult for advice. I'm assuming she can't just get her local physician any time she wants to talk to them. Someone else who drinks is not reliable. The people at the party will probably drink too.
Answer: The relationship between blood pressure and heart rate responses to coughing was investigated in 10 healthy subjects in three body positions and compared with the circulatory responses to commonly used autonomic function tests: forced breathing, standing up and the Valsalva manoeuvre. 2. We observed a concomitant intra-cough increase in supine heart rate and blood pressure and a sustained post-cough elevation of heart rate in the absence of arterial hypotension. These findings indicate that the sustained increase in heart rate in response to coughing is not caused by arterial hypotension and that these heart rate changes are not under arterial baroreflex control. 3. The maximal change in heart rate in response to coughing (28 +/- 8 beats/min) was comparable with the response to forced breathing (29 +/- 9 beats/min, P greater than 0.4), with a reasonable correlation (r = 0.67, P less than 0.05), and smaller than the change in response to standing up (41 +/- 9 beats/min, P less than 0.01) and to the Valsalva manoeuvre (39 +/- 13 beats/min, P less than 0.01). 4. Quantifying the initial heart rate response to coughing offers no advantage in measuring cardiac acceleratory capacity; standing up and the Valsalva manoeuvre are superior to coughing in evaluating arterial baroreflex cardiovascular function.
Explanation: