1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vesna_86 [32]
2 years ago
12

Write in slope intercept form

Mathematics
2 answers:
ololo11 [35]2 years ago
5 0
option b because the y-intercept is at -5, so A and B are left. then since the line of the graph is going down, from left to right, your slope is going to be a negative. B is your final answer :)
saveliy_v [14]2 years ago
3 0

Answer:

option B

Step-by-step explanation:

the slope is -2, so the equation must have -2x in it.

This narrows it down to option C and B

the intercept is at -5, not +5 so the correct answer is y = -2x - 5

You might be interested in
Ten less than half of a number(x) is 6.
Likurg_2 [28]

Answer:

x = 32

Step-by-step explanation:

Given the following data;

Unknown number = x

Translating the word problem into an algebraic equation, we have;

\frac {x}{2} - 10 = 6

Lowest common denominator (LCD) = 2

We multiply all through by 2;

2* \frac {x}{2} - 2*10 = 2*6

x - 20 = 12

x = 12 + 20

x = 32

Therefore, the unknown number is 32.

3 0
2 years ago
HELP ASAP PLEASE!!!!!!
Nuetrik [128]

Answer:

3

Step-by-step explanation:

The common ratio here is 3.  Note that 4 is the first term of this sequence, and that n is the index:  first term, second term, etc.

Every term is found by mult. the previous term by 3.


3 0
3 years ago
Consider the quadratic function f(y) = 8y2 – 7y + 6. What is the constant of the function?
Paraphin [41]
The constant of the function would be 6.
Hope this helps!
5 0
3 years ago
Read 2 more answers
Solve the initial-value problem using the method of undetermined coefficients.
andrey2020 [161]

First check the characteristic solution. The characteristic equation to this DE is

<em>r</em> ² - <em>r</em> = <em>r</em> (<em>r</em> - 1) = 0

with roots <em>r</em> = 0 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁ </em>exp(0<em>x</em>) + <em>C₂</em> exp(1<em>x</em>)

<em>y</em> (char.) = <em>C₁</em> + <em>C₂</em> exp(<em>x</em>)

For the particular solution, we try the <em>ansatz</em>

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) exp(<em>x</em>)

but exp(<em>x</em>) is already accounted for in the second term of <em>y</em> (char.), so we multiply each term here by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> ² + <em>bx</em>) exp(<em>x</em>)

Differentiate this twice and substitute the derivatives into the DE.

<em>y'</em> (part.) = (2<em>ax</em> + <em>b</em>) exp(<em>x</em>) + (<em>ax</em> ² + <em>bx</em>) exp(<em>x</em>)

… = (<em>ax</em> ² + (2<em>a</em> + <em>b</em>)<em>x</em> + <em>b</em>) exp(<em>x</em>)

<em>y''</em> (part.) = (2<em>ax</em> + 2<em>a</em> + <em>b</em>) exp(<em>x</em>) + (<em>ax</em> ² + (2<em>a</em> + <em>b</em>)<em>x</em> + <em>b</em>) exp(<em>x</em>)

… = (<em>ax</em> ² + (4<em>a</em> + <em>b</em>)<em>x</em> + 2<em>a</em> + 2<em>b</em>) exp(<em>x</em>)

(<em>ax</em> ² + (4<em>a</em> + <em>b</em>)<em>x</em> + 2<em>a</em> + 2<em>b</em>) exp(<em>x</em>) - (<em>ax</em> ² + (2<em>a</em> + <em>b</em>)<em>x</em> + <em>b</em>) exp(<em>x</em>)

= <em>x</em> exp(<em>x</em>)

The factor of exp(<em>x</em>) on both sides is never zero, so we can cancel them:

(<em>ax</em> ² + (4<em>a</em> + <em>b</em>)<em>x</em> + 2<em>a</em> + 2<em>b</em>) - (<em>ax</em> ² + (2<em>a</em> + <em>b</em>)<em>x</em> + <em>b</em>) = <em>x</em>

Collect all the terms on the left side to reduce it to

2<em>ax</em> + 2<em>a</em> + <em>b</em> = <em>x</em>

Matching coefficients gives the system

2<em>a</em> = 1

2<em>a</em> + <em>b</em> = 0

and solving this yields

<em>a</em> = 1/2, <em>b</em> = -1

Then the general solution to this DE is

<em>y(x)</em> = <em>C₁</em> + <em>C₂</em> exp(<em>x</em>) + (1/2 <em>x</em> ² - <em>x</em>) exp(<em>x</em>)

For the given initial conditions, we have

<em>y</em> (0) = <em>C₁</em> + <em>C₂</em> = 6

<em>y'</em> (0) = <em>C₂</em> - 1 = 5

and solving for the constants here gives

<em>C₁</em> = 0, <em>C₂</em> = 6

so that the particular solution to the IVP is

<em>y(x)</em> = 6 exp(<em>x</em>) + (1/2 <em>x</em> ² - <em>x</em>) exp(<em>x</em>)

3 0
2 years ago
I don't understand what it's ask or how to do it .
k0ka [10]
6:1 , basically asking the ratio of one to the other. Understand?
7 0
2 years ago
Read 2 more answers
Other questions:
  • Isthere 100 inches in 8 foot
    10·2 answers
  • Note: Enter your answer and show all the steps that you use to solve this problem in the space provided. Annika borrowed a book
    14·1 answer
  • 11.) Use the distributive property to expand the expression. (4 – 2x) 7
    13·1 answer
  • You are analyzing the allele frequencies for fur color in a population of squirrels where black fur is dominant to red fur. As p
    13·1 answer
  • Ive got chips on my shoulder and i cant take them off
    11·2 answers
  • 1. If a (x) = 3x + 1 and b (x)=√x-4, what is the domain of (b*a) (x)?
    5·1 answer
  • What is the slope of the line? question 3
    13·2 answers
  • Ben orders a cost of us tovorite macaroni and cheese. The case contains 18 same-
    15·2 answers
  • The Mallards pay their two quarterbacks $7.2 million and $1.4 million. If the team salary is $33 million a year and their budget
    14·2 answers
  • Help please i dont get it
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!