Answer:
Since it does not plug in to the second linear equation, the ordered pair is not a solution of the linear system.
Step-by-step explanation:
(-1,3); y = -7x -4 y = 8x + 5 3 =7 - 4 3 =/ - 8 + 5
Answer: D (I think)
Step-by-step explanation:
If we take the square of x and square of y and then subtract them:
(csc t)²-(cot t)²=1 ( this eq. gets from basic identity
x²-y²=1......a 1+cot²x=csc²x)
equation 'a' represent the equation of hyperbola which is (x²/a²)-(y²/b²) =1 with given conditions( a=1,b=1)
So, option D is correct
Answer:
- vertex (3, -1)
- y-intercept: (0, 8)
- x-intercepts: (2, 0), (4, 0)
Step-by-step explanation:
You are being asked to read the coordinates of several points from the graph. Each set of coordinates is an (x, y) pair, where the first coordinate is the horizontal distance to the right of the y-axis, and the second coordinate is the vertical distance above the x-axis. The distances are measured according to the scales marked on the x- and y-axes.
__
<h3>Vertex</h3>
The vertex is the low point of the graph. The graph is horizontally symmetrical about this point. On this graph, the vertex is (3, -1).
<h3>Y-intercept</h3>
The y-intercept is the point where the graph crosses the y-axis. On this graph, the y-intercept is (0, 8).
<h3>X-intercepts</h3>
The x-intercepts are the points where the graph crosses the x-axis. You will notice they are symmetrically located about the vertex. On this graph, the x-intercepts are (2, 0) and (4, 0).
__
<em>Additional comment</em>
The reminder that these are "points" is to ensure that you write both coordinates as an ordered pair. We know the x-intercepts have a y-value of zero, for example, so there is a tendency to identify them simply as x=2 and x=4. This problem statement is telling you to write them as ordered pairs.
Answer:
h(8q²-2q) = 56q² -10q
k(2q²+3q) = 16q² +31q
Step-by-step explanation:
1. Replace x in the function definition with the function's argument, then simplify.
h(x) = 7x +4q
h(8q² -2q) = 7(8q² -2q) +4q = 56q² -14q +4q = 56q² -10q
__
2. Same as the first problem.
k(x) = 8x +7q
k(2q² +3q) = 8(2q² +3q) +7q = 16q² +24q +7q = 16q² +31q
_____
Comment on the problem
In each case, the function definition says the function is not a function of q; it is only a function of x. It is h(x), not h(x, q). Thus the "q" in the function definition should be considered to be a literal not to be affected by any value x may have. It could be considered another way to write z, for example. In that case, the function would evaluate to ...
h(8q² -2q) = 56q² -14q +4z
and replacing q with some value (say, 2) would give 196+4z, a value that still has z as a separate entity.
In short, I believe the offered answers are misleading with respect to how you would treat function definitions in the real world.