Consider right triangle ΔABC with legs AC and BC and hypotenuse AB. Draw the altitude CD.
1. Theorem: The length of each leg of a right triangle is the geometric mean of the length of the hypotenuse and the length of the segment of the hypotenuse adjacent to that leg.
According to this theorem,

Let BC=x cm, then AD=BC=x cm and BD=AB-AD=3-x cm. Then

Take positive value x. You get

2. According to the previous theorem,

Then

Answer: 
This solution doesn't need CD=2 cm. Note that if AB=3cm and CD=2cm, then

This means that you cannot find solutions of this equation. Then CD≠2 cm.
Answer:
First we need to put all the given information in a table, that way we'll express it better into inequalities.
Cost Production Max.
Console screen (x) $600 450
Wide-screen (y) $900 200
$360,000
We have:

Because they can't spend more than $360,000 in production.

Because the number of television is restricted.
The profit function is
(this is the function we need to maximize).
First, we need to draw each inequality. The image attached shows the region of solution, which has vertices (0,200), (300,200), (450, 100) and (450,0).
Now, we test each point in the profit function to see which one gives the highest profit.
For (300,200):

300 console screen and 200 wide screen give a profit of $77,500.
For (450,100):

450 console screen and 100 wide screen give a profit of $76,250.
<h3>
Therefore, to reach the maximum profits, TeeVee Electronic, Inc., must produce 300 console screen televisions and 200 wide-screen televisions to profit $77,500,</h3>
Answer:
i think its D but sorry if im wrong !! <3
Step-by-step explanation:
It would be from 0 < x < 4 as the question is basically asking when is the function below the y value of 0, so below the x-axis