Well, parallel lines have the same exact slope, so hmmm what's the slope of the one that runs through <span>(0, −3) and (2, 3)?
</span>

<span>
so, we're really looking for a line whose slope is 3, and runs through -1, -1
</span>
![\bf \begin{array}{ccccccccc} &&x_1&&y_1\\ % (a,b) &&(~ -1 &,& -1~) \end{array} \\\\\\ % slope = m slope = m\implies 3 \\\\\\ % point-slope intercept \stackrel{\textit{point-slope form}}{y- y_1= m(x- x_1)}\implies y-(-1)=3[x-(-1)] \\\\\\ y+1=3(x+1)](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Barray%7D%7Bccccccccc%7D%0A%26%26x_1%26%26y_1%5C%5C%0A%25%20%20%28a%2Cb%29%0A%26%26%28~%20-1%20%26%2C%26%20-1~%29%0A%5Cend%7Barray%7D%0A%5C%5C%5C%5C%5C%5C%0A%25%20slope%20%20%3D%20m%0Aslope%20%3D%20%20m%5Cimplies%203%0A%5C%5C%5C%5C%5C%5C%0A%25%20point-slope%20intercept%0A%5Cstackrel%7B%5Ctextit%7Bpoint-slope%20form%7D%7D%7By-%20y_1%3D%20m%28x-%20x_1%29%7D%5Cimplies%20y-%28-1%29%3D3%5Bx-%28-1%29%5D%0A%5C%5C%5C%5C%5C%5C%0Ay%2B1%3D3%28x%2B1%29)
<span>
</span>
ANSWER

EXPLANATION
The given problem is

This is defined if and only if

Even the given expression can be simplified to obtain:

The exclusion is

X=number of females
47-x=number of males
# of males is 2*(number of females)-7:
47-x= 2x-7
add x to both sides:
47=3x-7
add 7 to both sides:
54=3x
divide both sides by 3:
x= 18 females
47-18= 29 males
name two segments parallel to VU.
ST,ZY,WX
NAME TWO SEGMENTS SKEW TO SW VU,ZY,UT,XY
NAME TWO SEGMENTS SKEW TO XY SW,VZ,VS,ST,VU
Suppose J, K, L, M, N are points on the same line.
MK = MN + (-KN) = MN - KN = 9x - 11 - x - 3 = 8x - 14
Since LK = MK and LK = 7x - 10, then
7x - 10 = 8x - 14
8x - 7x = -10 + 14
x = 4
LJ = MK + KJ
MK = LK = 7x - 10 = 7(4) - 10 = 28 - 10 = 18
LJ = 18 + 28 = 46