Answer:
B. 
Step-by-step explanation:
Well lets graph the following equation first,
H(x) = -.011(x - 82)^2 + 75
Then lets graph all the other equations.
Look at the image below↓
So A.
The purple line does not go farther or higher,
so A. is incorrect
B.
The black line goes higher and farther,
meaning it is correct.
C.
The red line goes farther but not higher.
So it is incorrect
D.
Again the blue line does not go farther of higher.
So its wrong.
<em>Thus,</em>
<em>answer choice B. </em>
<em>is correct.</em>
<em />
<em>Hope this helps :)</em>
We will use the formula of discount % to find the selling price...!
<h2>
<u>_______________________</u></h2>
<em>Complete solution in attachment!</em>
Check the picture below.
so the rhombus has the diagonals of AC and BD, now keeping in mind that the diagonals bisect each, namely they cut each other in two equal halves, let's find the length of each.
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ A(\stackrel{x_1}{-4}~,~\stackrel{y_1}{-2})\qquad C(\stackrel{x_2}{6}~,~\stackrel{y_2}{8})\qquad \qquad % distance value d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ AC=\sqrt{[6-(-4)]^2+[8-(-2)]^2}\implies AC=\sqrt{(6+4)^2+(8+2)^2} \\\\\\ AC=\sqrt{10^2+10^2}\implies AC=\sqrt{10^2(2)}\implies \boxed{AC=10\sqrt{2}}\\\\ -------------------------------](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%0A%5C%5C%5C%5C%0AA%28%5Cstackrel%7Bx_1%7D%7B-4%7D~%2C~%5Cstackrel%7By_1%7D%7B-2%7D%29%5Cqquad%20%0AC%28%5Cstackrel%7Bx_2%7D%7B6%7D~%2C~%5Cstackrel%7By_2%7D%7B8%7D%29%5Cqquad%20%5Cqquad%20%0A%25%20%20distance%20value%0Ad%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0AAC%3D%5Csqrt%7B%5B6-%28-4%29%5D%5E2%2B%5B8-%28-2%29%5D%5E2%7D%5Cimplies%20AC%3D%5Csqrt%7B%286%2B4%29%5E2%2B%288%2B2%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0AAC%3D%5Csqrt%7B10%5E2%2B10%5E2%7D%5Cimplies%20AC%3D%5Csqrt%7B10%5E2%282%29%7D%5Cimplies%20%5Cboxed%7BAC%3D10%5Csqrt%7B2%7D%7D%5C%5C%5C%5C%0A-------------------------------)
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ B(\stackrel{x_1}{-2}~,~\stackrel{y_1}{6})\qquad D(\stackrel{x_2}{4}~,~\stackrel{y_2}{0})\qquad \qquad BD=\sqrt{[4-(-2)]^2+[0-6]^2} \\\\\\ BD=\sqrt{(4+2)^2+(-6)^2}\implies BD=\sqrt{6^2+6^2} \\\\\\ BD=\sqrt{6^2(2)}\implies \boxed{BD=6\sqrt{2}}](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%0A%5C%5C%5C%5C%0AB%28%5Cstackrel%7Bx_1%7D%7B-2%7D~%2C~%5Cstackrel%7By_1%7D%7B6%7D%29%5Cqquad%20%0AD%28%5Cstackrel%7Bx_2%7D%7B4%7D~%2C~%5Cstackrel%7By_2%7D%7B0%7D%29%5Cqquad%20%5Cqquad%20BD%3D%5Csqrt%7B%5B4-%28-2%29%5D%5E2%2B%5B0-6%5D%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0ABD%3D%5Csqrt%7B%284%2B2%29%5E2%2B%28-6%29%5E2%7D%5Cimplies%20BD%3D%5Csqrt%7B6%5E2%2B6%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0ABD%3D%5Csqrt%7B6%5E2%282%29%7D%5Cimplies%20%5Cboxed%7BBD%3D6%5Csqrt%7B2%7D%7D)
that simply means that each triangle has a side that is half of 10√2 and another side that's half of 6√2.
namely, each triangle has a "base" of 3√2, and a "height" of 5√2, keeping in mind that all triangles are congruent, then their area is,
There's nothing preventing us from computing one integral at a time:



Expand the integrand completely:

Then
