1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
galben [10]
3 years ago
12

Open Picture Need Help With 11 & 12

Mathematics
1 answer:
likoan [24]3 years ago
4 0

Answer:

Step-by-step explanation:

7). (x + 3)(x + 7)

  = x(x + 7) + 3(x + 7)

  = x² + 7x + 3x + 21

  = x² + 10x + 21

8). (4x + 2)(x - 2)

  = 4x(x - 2) + 2(x - 2)

  = 4x² - 8x + 2x - 4

  = 4x² - 6x - 4

9). (3x + 2)(2x + 5)

  = 3x(2x + 5) + 2(2x + 5)

  = 6x² + 15x + 4x + 10

  = 6x² + 19x + 10

10). (x² - 6)(x - 4)

  = x²(x - 4) - 6(x - 4)

  = x³ - 4x² - 6x + 24

11). (x² + 9)(x - 3)

  = x²(x - 3) + 9(x - 3)

  = x³ - 3x² + 9x - 27

12). (4x²- 4)(2x + 1)

  = 4x²(2x + 1) - 4(2x + 1)

  = 8x³ + 4x² - 8x - 4

You might be interested in
The roots of an equation are x=-1 plus or minus I the equation is x^2+ ?
Oxana [17]

Answer:

x^2+2x+2

Step-by-step explanation:

If the roots of the equation are -1\pm i, then by the zero product rule:

x=-1\pm i \\\\x+1\pm i=0 \\\\(x+1+i)(x+1-i)=0\\\\x^2+x-ix+x+1-i+ix+i+1=0 \\\\x^2+2x+2=0

You can confirm this with the quadratic equation:

x=\dfrac{-2\pm\sqrt{4-8}}{2}=\dfrac{-2\pm 4i}{2}=-1\pm i

Hope this helps!

8 0
3 years ago
Find all solutions to the following quadratic equations, and write each equation in factored form.
dexar [7]

Answer:

(a) The solutions are: x=5i,\:x=-5i

(b) The solutions are: x=3i,\:x=-3i

(c) The solutions are: x=i-2,\:x=-i-2

(d) The solutions are: x=-\frac{3}{2}+i\frac{\sqrt{7}}{2},\:x=-\frac{3}{2}-i\frac{\sqrt{7}}{2}

(e) The solutions are: x=1,\:x=-1,\:x=\sqrt{5}i,\:x=-\sqrt{5}i

(f) The solutions are: x=1

(g) The solutions are: x=0,\:x=1,\:x=-2

(h) The solutions are: x=2,\:x=2i,\:x=-2i

Step-by-step explanation:

To find the solutions of these quadratic equations you must:

(a) For x^2+25=0

\mathrm{Subtract\:}25\mathrm{\:from\:both\:sides}\\x^2+25-25=0-25

\mathrm{Simplify}\\x^2=-25

\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\\\x=\sqrt{-25},\:x=-\sqrt{-25}

\mathrm{Simplify}\:\sqrt{-25}\\\\\mathrm{Apply\:radical\:rule}:\quad \sqrt{-a}=\sqrt{-1}\sqrt{a}\\\\\sqrt{-25}=\sqrt{-1}\sqrt{25}\\\\\mathrm{Apply\:imaginary\:number\:rule}:\quad \sqrt{-1}=i\\\\\sqrt{-25}=\sqrt{25}i\\\\\sqrt{-25}=5i

-\sqrt{-25}=-5i

The solutions are: x=5i,\:x=-5i

(b) For -x^2-16=-7

-x^2-16+16=-7+16\\-x^2=9\\\frac{-x^2}{-1}=\frac{9}{-1}\\x^2=-9\\\\\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\x=\sqrt{-9},\:x=-\sqrt{-9}

The solutions are: x=3i,\:x=-3i

(c) For \left(x+2\right)^2+1=0

\left(x+2\right)^2+1-1=0-1\\\left(x+2\right)^2=-1\\\mathrm{For\:}\left(g\left(x\right)\right)^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\\\x+2=\sqrt{-1}\\x+2=i\\x=i-2\\\\x+2=-\sqrt{-1}\\x+2=-i\\x=-i-2

The solutions are: x=i-2,\:x=-i-2

(d) For \left(x+2\right)^2=x

\mathrm{Expand\:}\left(x+2\right)^2= x^2+4x+4

x^2+4x+4=x\\x^2+4x+4-x=x-x\\x^2+3x+4=0

For a quadratic equation of the form ax^2+bx+c=0 the solutions are:

x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:}\quad a=1,\:b=3,\:c=4:\quad x_{1,\:2}=\frac{-3\pm \sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}

x_1=\frac{-3+\sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}=\quad -\frac{3}{2}+i\frac{\sqrt{7}}{2}\\\\x_2=\frac{-3-\sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}=\quad -\frac{3}{2}-i\frac{\sqrt{7}}{2}

The solutions are: x=-\frac{3}{2}+i\frac{\sqrt{7}}{2},\:x=-\frac{3}{2}-i\frac{\sqrt{7}}{2}

(e) For \left(x^2+1\right)^2+2\left(x^2+1\right)-8=0

\left(x^2+1\right)^2= x^4+2x^2+1\\\\2\left(x^2+1\right)= 2x^2+2\\\\x^4+2x^2+1+2x^2+2-8\\x^4+4x^2-5

\mathrm{Rewrite\:the\:equation\:with\:}u=x^2\mathrm{\:and\:}u^2=x^4\\u^2+4u-5=0\\\\\mathrm{Solve\:with\:the\:quadratic\:equation}\:u^2+4u-5=0

u_1=\frac{-4+\sqrt{4^2-4\cdot \:1\left(-5\right)}}{2\cdot \:1}=\quad 1\\\\u_2=\frac{-4-\sqrt{4^2-4\cdot \:1\left(-5\right)}}{2\cdot \:1}=\quad -5

\mathrm{Substitute\:back}\:u=x^2,\:\mathrm{solve\:for}\:x\\\\\mathrm{Solve\:}\:x^2=1=\quad x=1,\:x=-1\\\\\mathrm{Solve\:}\:x^2=-5=\quad x=\sqrt{5}i,\:x=-\sqrt{5}i

The solutions are: x=1,\:x=-1,\:x=\sqrt{5}i,\:x=-\sqrt{5}i

(f) For \left(2x-1\right)^2=\left(x+1\right)^2-3

\left(2x-1\right)^2=\quad 4x^2-4x+1\\\left(x+1\right)^2-3=\quad x^2+2x-2\\\\4x^2-4x+1=x^2+2x-2\\4x^2-4x+1+2=x^2+2x-2+2\\4x^2-4x+3=x^2+2x\\4x^2-4x+3-2x=x^2+2x-2x\\4x^2-6x+3=x^2\\4x^2-6x+3-x^2=x^2-x^2\\3x^2-6x+3=0

\mathrm{For\:}\quad a=3,\:b=-6,\:c=3:\quad x_{1,\:2}=\frac{-\left(-6\right)\pm \sqrt{\left(-6\right)^2-4\cdot \:3\cdot \:3}}{2\cdot \:3}\\\\x_{1,\:2}=\frac{-\left(-6\right)\pm \sqrt{0}}{2\cdot \:3}\\x=\frac{-\left(-6\right)}{2\cdot \:3}\\x=1

The solutions are: x=1

(g) For x^3+x^2-2x=0

x^3+x^2-2x=x\left(x^2+x-2\right)\\\\x^2+x-2:\quad \left(x-1\right)\left(x+2\right)\\\\x^3+x^2-2x=x\left(x-1\right)\left(x+2\right)=0

Using the Zero Factor Theorem: = 0 if and only if = 0 or = 0

x=0\\x-1=0:\quad x=1\\x+2=0:\quad x=-2

The solutions are: x=0,\:x=1,\:x=-2

(h) For x^3-2x^2+4x-8=0

x^3-2x^2+4x-8=\left(x^3-2x^2\right)+\left(4x-8\right)\\x^3-2x^2+4x-8=x^2\left(x-2\right)+4\left(x-2\right)\\x^3-2x^2+4x-8=\left(x-2\right)\left(x^2+4\right)

Using the Zero Factor Theorem: = 0 if and only if = 0 or = 0

x-2=0:\quad x=2\\x^2+4=0:\quad x=2i,\:x=-2i

The solutions are: x=2,\:x=2i,\:x=-2i

3 0
3 years ago
What pair of lines are parallel
MAVERICK [17]

Answer:

D and C

Step-by-step explanation:

any line that is convergent, no divergent lines, and intersecting lines.

6 0
3 years ago
In Triangle XYZ below, x2+y2=z2.
choli [55]

4, 2, 1, 3

we cannot use 2 before having another triangle, so 4 must be before 2

we can use 1, but it will be just a restatement of the given information is not done before 4 and 2

3 is the final goal, which is always the last step

8 0
3 years ago
A football team loses 3 yards on one play and 6 yards on another play write a sum of negative intergers to represent this situat
andrew11 [14]
6-3-3=-0 its - cause 3+3=6 and if 3-6-3 is o but its already o then just put a little line net to the zero
7 0
3 years ago
Other questions:
  • Without solving, determine the number of solutions for this system. What does the graph of the system look like?
    14·2 answers
  • Nicole bought a mattress priced at $938. Shipping and handling cost an additional 27% of the price. What was the total cost of t
    5·2 answers
  • Can someone PLEASE explain how to simplify square roots with variables and eexponents in them?? I'd also be thankful if you expl
    15·1 answer
  • How many 2/3 -ounce packages of peanuts can be made with 8 ounces of peanuts? Explain how you found your answer.
    6·1 answer
  • On a number line, a number, b, is located the same distance from 0 as another number, a, but in the opposite direction. The numb
    11·2 answers
  • Encrypt the word TO using an alphabetic Caesar shift cipher with shift 10 (mapping A to K). Use only capital letters in your ans
    9·1 answer
  • Rocco is doing an internship with a local carpenter. He is making $11.50 an hour. His total check for the month of November was
    6·2 answers
  • Solve the system using the elimination method. write solution as a orders pair.
    10·2 answers
  • If 3x - 7 = 2, then x equals?
    8·2 answers
  • What is the equation of the line that passes through the point (- 1, 5) and is parallel to the line y = - 3x + 5
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!