Answer:
x value of vertical asymptote and y value of horizontal asymptote
Step-by-step explanation:
The graph of 1/x approaches infinity as x approaches 0 (the vertical asymptote)
As x gets either bigger or smaller, 1/x approaches the x-axis (from above on the positive side, from below on the negative side) (the horizontal asymptote)
Consider 1/(x-5) + 2, at what value of x does the graph 'go nuts' ?
When the bottom of the fraction becomes 0, x - 5 becomes 0 when x = 5, so the vertical asymptote of g(x) is at x=5
What value of y does f(x) approach as x gets more positive or more negative - as x gets bigger (as an example), y approaches 0
What y value does g(x) approach as x gets bigger? Well, as x gets big, 1/(x-5) gets small, approaching 0. The smallest 0 + 2 can get is 2, so y=2 is the horizontal asymptote
Is the sum of 3/10 and 68/100 is =
0.98
Answer: y-int ( 0, 0.4 ) x-int ( 0.3, 0 )
Step-by-step explanation:
Given in the graph
X axis and Y axis.
A square is a geometrical figure that has 4 congruent sides and angles. This means all side lengths and angles are the same.
A rectangle is a geometrical figure that has 4 similar sides but are not the same length. However, a rectangle does have congruent angles. A rectangle has 2 sides that are double the other 2 sides, in which both of each (length & width) have the same measurement.
I hope this helps!
Answer: provided in the explanation segment
Step-by-step explanation:
here i will give a step by step analysis of the question;
A: Optimization Formulation
given Xij = X no. of units of product i manufactured in Plant j, where i = 1,2,3 and J = 1,2,3,4,5
Objective function: Minimize manufacturing cost (Z)
Z = 31 X11 + 29 X12 + 32X13 + 28X14 + 29 X15 + 45 X21 + 41 X22 + 46X23 + 42X24 + 43 X25 + 38 X31 + 35 X32 + 40X33
s.t
X11 + X12 + X13 + X14 + X15 = 600
X21 + X22 + X23 + X24 + X25 = 1000
X31 + X32 + X33 = 800
X11 + X21 + X31 <= 400
X12 + X22 + X32 <= 600
X13 + X23 + X33 <= 400
X14 + X24 <= 600
X15 + X25 <= 1000
Xij >= 0 for all i,j
B:
Yes, we can formulate this problem as a transportation problem because in transportation problem we need to match the supply of source to demand of destination. Here we can assume that the supply of source is nothing but the manufacturing capability of plant and demand of destination is similar to the demand of products.
cheers i hope this helps!!