Answer:
f(x) = x2 – p(x + 1) – c, then (α + 1)(β + 1)f(x) = x2 – p(x + 1) – c, then (α + 1)(β + 1)
Step-by-step f(x) = x2 – p(x + 1) – c, then (α + 1)(β + 1)explanation:
f(x) = x2 – p(x + 1) – c, then (α + 1)(β + 1)f(x) = x2 – p(x + 1) – c, then (α + 1)(β + 1)f(x) = x2 – p(x + 1) – c, then (α + 1)(β + 1)f(x) f(x) = x2 – p(x + 1) – c, then (α + 1)(β + 1)p(x + 1) – c, then (α + 1)(β + 1)f(x) = x2 – p(xf(x) = x2 – p(x + 1) – c, then (α + 1)(β + 1) + 1) – c, then (α + 1)(β + 1)f(x) = x2 – p(xf(x) = x2 – p(x + 1) – c, then (α + 1)(β + 1) + 1) – c, then (α + 1)(β + 1)f(x) = x2 – p(x + 1) – c, then (α + 1)(β + 1)
H(2)=x²=2²=4
G[H(2)]=G(4)=3(4)+2=12+2=14
F[G[H(2)]]=F(14)=2(14)-1=28-1=27
Answer: F[G[H(2)]]=27
Answer:
17 sides
Step-by-step explanation:
The sum of the interior angles of a polygon is
sum = 180° (n - 2) ← n is the number of sides
Here sum = 2700° , then
180°(n - 2) = 2700° ( divide both sides by 180° )
n - 2 = 15 ( add 2 to both sides )
n = 17
The polygon has 17 sides