1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PilotLPTM [1.2K]
3 years ago
6

Which side lengths could create a triangle? . A 10 cm, 10 cm, 20 cm oc 5 cm, 5 cm, 15 cm O B. 5 cm, 10 cm, 20 cm OD 10 cm, 10 cm

, 15 cm​
Mathematics
1 answer:
FromTheMoon [43]3 years ago
6 0
D because most are the same length but since your triangle isn’t in guessing it isn’t to far off
You might be interested in
Simplify 600 g : 1.6 Kg<br>please tell
Evgen [1.6K]

Answer:

Answer..

First of all..

change gm into kg

1kg =1000gm

1gm=1/1000kg

600gm=6/10 kg

(6/10) /1.6=6/16=3/8

☺✌hope it helps you☺✌

Step-by-step explanation:

3 0
3 years ago
The angle measures of triangle ABC are given:
timofeeve [1]

Answer:

x=20

Step-by-step explanation:

By the Triangle Sum Theorem, the angles of a triangle add up to 180. So we can set up the equation like this:

2x-10+70+4x=180

Combine Like terms

6x+60=180

Subtract 60 from both sides

6x=120

Divide by 6 to isolate the variable

x=20

6 0
3 years ago
Read 2 more answers
Fill in the boxes to complete the addition. 3/5+1/4
Fynjy0 [20]

Answer:

3/5 + 1/4 = 17/20

Step-by-step explanation:

  • \frac{3}{5} + \frac{1}{4}
  • LCM is 20
  • \frac{12}{20} + \frac{5}{20}
  • \frac{17}{20}
7 0
3 years ago
The problem is attached, thanks.
NeX [460]

Answer:

\displaystyle \frac{dy}{dx} \bigg| \limit_{(1, 4)} = 2

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

<u>Algebra I</u>

  • Coordinates (x, y)
  • Exponential Rule [Root Rewrite]:                                                                 \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}
  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Implicit Differentiation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle \sqrt{x} - \sqrt{y} = -1

Point (1, 4)

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                               \displaystyle x^{\frac{1}{2}} - y^{\frac{1}{2}} = -1
  2. [Implicit Differentiation] Basic Power Rule:                                                 \displaystyle \frac{1}{2}x^{\frac{1}{2} - 1} - \frac{1}{2}y^{\frac{1}{2} - 1}\frac{dy}{dx} = 0
  3. [Implicit Differentiation] Simplify Exponents:                                               \displaystyle \frac{1}{2}x^{\frac{-1}{2}} - \frac{1}{2}y^{\frac{-1}{2}}\frac{dy}{dx} = 0
  4. [Implicit Differentiation] Rewrite [Exponential Rule - Rewrite]:                   \displaystyle \frac{1}{2x^{\frac{1}{2}}} - \frac{1}{2y^{\frac{1}{2}}}\frac{dy}{dx} = 0
  5. [Implicit Differentiation] Isolate <em>y</em> terms:                                                       \displaystyle -\frac{1}{2y^{\frac{1}{2}}}\frac{dy}{dx} = -\frac{1}{2x^{\frac{1}{2}}}
  6. [Implicit Differentiation] Isolate \displaystyle \frac{dy}{dx}:                                                               \displaystyle \frac{dy}{dx} = \frac{2y^{\frac{1}{2}}}{2x^{\frac{1}{2}}}
  7. [Implicit Differentiation] Simplify:                                                                 \displaystyle \frac{dy}{dx} = \frac{y^{\frac{1}{2}}}{x^{\frac{1}{2}}}

<u>Step 3: Evaluate</u>

  1. Substitute in point [Derivative]:                                                                     \displaystyle \frac{dy}{dx} = \frac{(4)^{\frac{1}{2}}}{(1)^{\frac{1}{2}}}
  2. Exponents:                                                                                                     \displaystyle \frac{dy}{dx} = \frac{2}{1}
  3. Division:                                                                                                         \displaystyle \frac{dy}{dx} = 2

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Implicit Differentiation

Book: College Calculus 10e

6 0
3 years ago
4. Each set of data was collected from surveys to answer statistical questions. Select all of the data sets that represent numer
Ede4ka [16]

Answer:

Options (A), (C), (D) and (E).

Step-by-step explanation:

There are two types of sets in the given options.

1). Numerical data - Data which shows the numeral values or the numbers which tells the exact meaning of quantities like length, width or height.

2). Categorical data - Data which has no numeral values or no logical order.

Therefore, sets which show the numerical data are,

Option (A)

Option (C)

Option (D)

Option (E)

6 0
4 years ago
Other questions:
  • Question 4 of 10
    13·1 answer
  • If the sales tax in your city is 4.7 point, percent, and an item costs $164 dollar sign,before tax, how much tax would you pay o
    14·1 answer
  • Multiplying of real numbers <br> 1/5(-65)
    13·1 answer
  • Solve the system of equations <br> y=x2+4 <br> y=x+6
    5·1 answer
  • Which system below has no solution? y = 4x and y = 2x - 3y = -4x and y = 2x - 3 y = -4x and y = 2x + 3
    9·1 answer
  • Write a function rule for the table of values.
    8·1 answer
  • CAn you please explain thist to me?
    8·1 answer
  • (x^2-9)/(x+1) ÷ (x^2-6x+9)/(7x+7) reduced form?
    14·1 answer
  • A rectangular prism has a length of $\frac{5}{6}$ 5 6​​ inch and a width of 3 fifths$\frac{3}{5}$ 3 5​​ inch. The volume of the
    5·1 answer
  • Math please help &lt;&lt;--- aaaa
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!