It cost $156.40 because 20% of 195.50 is $39.10 so you subtract that from the 195.50.
Answer: ![f^{-1}(x) = \frac{\sqrt[3]{x^{2}}}{x}](https://tex.z-dn.net/?f=f%5E%7B-1%7D%28x%29%20%3D%20%5Cfrac%7B%5Csqrt%5B3%5D%7Bx%5E%7B2%7D%7D%7D%7Bx%7D)
<u>Step-by-step explanation:</u>

Inverse is when you swap the x's and y's and then solve for "y":


![y = \frac{1}{\sqrt[3]{x}}](https://tex.z-dn.net/?f=y%20%3D%20%5Cfrac%7B1%7D%7B%5Csqrt%5B3%5D%7Bx%7D%7D)
![y = \frac{1}{\sqrt[3]{x}}*(\frac{\sqrt[3]{x}}{\sqrt[3]{x}})^{2}](https://tex.z-dn.net/?f=y%20%3D%20%5Cfrac%7B1%7D%7B%5Csqrt%5B3%5D%7Bx%7D%7D%2A%28%5Cfrac%7B%5Csqrt%5B3%5D%7Bx%7D%7D%7B%5Csqrt%5B3%5D%7Bx%7D%7D%29%5E%7B2%7D)
![y = \frac{\sqrt[3]{x^{2}}}{x}](https://tex.z-dn.net/?f=y%20%3D%20%5Cfrac%7B%5Csqrt%5B3%5D%7Bx%5E%7B2%7D%7D%7D%7Bx%7D)
Label each nut with a variable, c = cashews, p = peanuts.....
for a 10-pound mix, you will need c + p = 10
the price for 10-pounds would become 3.29 x 10 = 32.90
You will need an unknown amount of cashews at 5.60/lb and an unknown amount of peanuts at 2.30/lbs to get your full 10 pounds valued at 32.90
5.60c + 2.30p = 32.90
Now you 2 have a system of 2 equations and 2 unknowns
c + p = 105.6c + 2.3p = 32.9utilize substitution to solve:p = 10-c
5.6 c + 2.3 (10-c) = 32.9
solve for c then substitute back into c + p = 10 to solve for P
Hope this helps!
Let c > 0. Then split the integral at t = c to write

By the FTC, the derivative is
![\displaystyle \frac{df}{dx} = \left(\frac1x + \sin\left(\frac1x\right)\right) \frac{d}{dx}\left[\frac1x\right] - (\ln(x) + \sin(\ln(x))) \frac{d}{dx}\left[\ln(x)\right] \\\\ = -\frac1{x^2} \left(\frac1x + \sin\left(\frac1x\right)\right) - \frac1x (\ln(x) + \sin(\ln(x))) \\\\ = -\frac1{x^3} - \frac{\sin\left(\frac1x\right)}{x^2} - \frac{\ln(x)}x - \frac{\sin(\ln(x))}x \\\\ = -\frac{1 + x\sin\left(\frac1x\right) + x^2\ln(x) + x^2 \sin(\ln(x))}{x^3}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bdf%7D%7Bdx%7D%20%3D%20%5Cleft%28%5Cfrac1x%20%2B%20%5Csin%5Cleft%28%5Cfrac1x%5Cright%29%5Cright%29%20%5Cfrac%7Bd%7D%7Bdx%7D%5Cleft%5B%5Cfrac1x%5Cright%5D%20-%20%28%5Cln%28x%29%20%2B%20%5Csin%28%5Cln%28x%29%29%29%20%5Cfrac%7Bd%7D%7Bdx%7D%5Cleft%5B%5Cln%28x%29%5Cright%5D%20%5C%5C%5C%5C%20%3D%20-%5Cfrac1%7Bx%5E2%7D%20%5Cleft%28%5Cfrac1x%20%2B%20%5Csin%5Cleft%28%5Cfrac1x%5Cright%29%5Cright%29%20-%20%5Cfrac1x%20%28%5Cln%28x%29%20%2B%20%5Csin%28%5Cln%28x%29%29%29%20%5C%5C%5C%5C%20%3D%20-%5Cfrac1%7Bx%5E3%7D%20-%20%5Cfrac%7B%5Csin%5Cleft%28%5Cfrac1x%5Cright%29%7D%7Bx%5E2%7D%20-%20%5Cfrac%7B%5Cln%28x%29%7Dx%20-%20%5Cfrac%7B%5Csin%28%5Cln%28x%29%29%7Dx%20%5C%5C%5C%5C%20%3D%20-%5Cfrac%7B1%20%2B%20x%5Csin%5Cleft%28%5Cfrac1x%5Cright%29%20%2B%20x%5E2%5Cln%28x%29%20%2B%20x%5E2%20%5Csin%28%5Cln%28x%29%29%7D%7Bx%5E3%7D)
A system of linear equations will have no solution when the two lines making up the equation are parallel. Here, a system having x + y = 2 will have no solution if the second equation is x + y = a. where a is any real number.