The dimensions that would result to maximum area will be found as follows:
let the length be x, the width will be 32-x
thus the area will be given by:
P(x)=x(32-x)=32x-x²
At maximum area:
dP'(x)=0
from the expression:
P'(x)=32-2x=0
solving for x
32=2x
x=16 inches
thus the dimensions that will result in maximum are is length=16 inches and width=16 inches
Answer:
The degree of the remainder should be 4 for the division process to be stopped
Step-by-step explanation:
From the question, we have the degree of the divisor as 5
So, for the division process to be stopped, the degree of the remainder should be one less than the degree of the divisor
Once the degree of the remainder is less than the degree of the divisor, we have no option that to stop and not proceed further with the division
So in the case of the particular question, the degree of the remainder should be of degree 4
Ms alvadaro 2:1 mr lowry 3:2
3+2=5 2+1=3
5:3
45/5=9 27/3=9
2·9=18 1·9=9
3 and one thirds, 4+3 and one thrids + two thirds= 7