Answer with Step-by-step explanation:
We are given that if sum of several numbers is odd
We have to prove that at least one of the number is itself odd.
Suppose, we have three numbers
a=6 , b=7,d=8
Sum of numbers=6+7+8=21=Odd number
We know that sum of two odd numbers is always an even number.
Sum of an odd number and an even number is always an odd number.
If we take even odd numbers then sum is always an even number and sum of odd odd numbers then the sum is always an odd number.


Sum of even numbers is always an even number.
Hence, there are atleast one numebr is odd then the sum of several number is odd.
Total possibilities would be:
(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)
(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)
(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)
(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)
(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)
(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)
You want 5 on at-least one, so mark 5th column & 5th raw.
There are 6 in both lines with 1 common = (5,5)
In short, Your Answer would be 11
Hope this helps!
Answer: A=l⋅w where A is the area of the rectangle, l is the length of the rectangle and w is the width of the rectangle.