If the triangle is isosceles and b is greater than a then,
(c) AC = BC is false.
An isosceles triangle in geometry is one with at least two equal-length sides. It can be defined as having exactly two equal-length sides or as having at least two equal-length sides, with the equilateral triangle being an exception to the second definition.
The triangle is an isosceles triangle and angle b is greater than angle b.
For option (A),
AB = BC, therefore a = c which is possible.
For option (B),
AB = AC, therefore b = c which is also possible.
For option (C),
AC = BC, therefore a =b.
But we have b > a. Hence AB = BC is false.
For option (D),
a = c, therefore AB = BC which is possible according to the properties of an isosceles triangle.
Option (C) is false.
Learn more about isosceles triangle here:
brainly.com/question/16294004
#SPJ9
The complete question is mentioned below:
Figure not drawn to scale. The triangle above is isosceles and b > a. Which of the following must be FALSE?
A) AB = BC
B) AB = AC
C) AC = BC
D) a = c
A vertical line is always an undefined slope
1. 3/7
2. 4/7
3. 4 in 52 or 1 in 13.
4. I don't know sorry
for A you should take each plotted point and change the sign of the x values. for example (-1,3) should become (1,3) and (-4,4) should become (4,4)
for B take each point and flip the variables and x's sign. (-1,3) should become (3,1)
for C take every x value and subtract 2. (-1,3) should become (-3,3)
for D take each point and flip the variables and y's sign. (-1,3) should become (-3,-1)
Answer:
Sorry
Step-by-step explanation:
I don't know the answer