1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lara [203]
2 years ago
11

Find angle x. Try not to tell me the wrong answers... A. 144 B. 70 C. 36 D. 90

Mathematics
2 answers:
dlinn [17]2 years ago
5 0
D. 90 im pretty sure its this. hope this helped :)
taurus [48]2 years ago
3 0
B. I think the answer is 70
You might be interested in
<img src="https://tex.z-dn.net/?f=%5Clim_%7Bx%5Cto%20%5C%200%7D%20%5Cfrac%7B%5Csqrt%7Bcos2x%7D-%5Csqrt%5B3%5D%7Bcos3x%7D%20%7D%7
salantis [7]

Answer:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \frac{1}{2}

General Formulas and Concepts:

<u>Calculus</u>

Limits

Limit Rule [Variable Direct Substitution]:                                                                     \displaystyle \lim_{x \to c} x = c

L'Hopital's Rule

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

We are given the limit:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)}

When we directly plug in <em>x</em> = 0, we see that we would have an indeterminate form:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \frac{0}{0}

This tells us we need to use L'Hoptial's Rule. Let's differentiate the limit:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \displaystyle  \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)}

Plugging in <em>x</em> = 0 again, we would get:

\displaystyle \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)} = \frac{0}{0}

Since we reached another indeterminate form, let's apply L'Hoptial's Rule again:

\displaystyle \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)} = \lim_{x \to 0} \frac{\frac{-[cos^2(2x) + 1]}{[cos(2x)]^{\frac{2}{3}}} + \frac{cos^2(3x) + 2}{[cos(3x)]^{\frac{5}{3}}}}{2cos(x^2) - 4x^2sin(x^2)}

Substitute in <em>x</em> = 0 once more:

\displaystyle \lim_{x \to 0} \frac{\frac{-[cos^2(2x) + 1]}{[cos(2x)]^{\frac{2}{3}}} + \frac{cos^2(3x) + 2}{[cos(3x)]^{\frac{5}{3}}}}{2cos(x^2) - 4x^2sin(x^2)} = \frac{1}{2}

And we have our final answer.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Limits

6 0
2 years ago
a carpebter has a board 2 meter needs to cut it in 8 equal pieces how many centerimeters long will each piece be
likoan [24]
2 centerimeters each
6 0
3 years ago
Which value of x is a solution of x &lt; -2?<br> A.<br> -3<br> B. -2<br> C.<br> -1<br> D. 0
Viefleur [7K]

Answer:

A

Step-by-step explanation:

-3<-2

7 0
3 years ago
Which of the pairs of ratios are equivalent? A) 12: 24, 50 :100 B) 16 to 3,27 to 5 C) 22/1, 68/3 D) 3/7, 17/35
RoseWind [281]

Answer:

A

Step-by-step explanation:

equivalent because each are 1:2

3 0
2 years ago
Consider the following data on the estimated cost (in millions of dollars) resulting from traffic congestion for different urban
IrinaK [193]

The mean is $5.769 million and the standard deviation is $3.905 million.

<h3>What is the mean?</h3>

The mean is the average of a data set.

<h3>What is the standard deviation?</h3>

The standard deviation shows the measure of the dispersion from the mean.

<h3>Data and Calculations:</h3>

Urban Area         Total Cost       Squared Difference

                        (millions of dollars)    (x - u)²

New York                  16                     104.65  

Los Angeles              13                      52.27

Chicago                      7                          1.51

Washington, D.C.       5                        0.59

Houston                      5                        0.59

Dallas, Fort Worth      4                         3.13

Detroit                        4                          3.13

Miami                         4                          3.13

Phoenix                     4                          3.13

Philadelphia              4                          3.13

San Francisco           3                          7.67

Boston                       3                          7.67

Atlanta                       3                          7.67

13    Total                 75                       198.27

Mean = 5.769 (75/13)                         15.251 (198.27/13)

Standard Deviation = 3.905 (square root of 15.251)

<h3>Question Completion:</h3>

Urban Area         Total Cost

                        (millions of dollars)

New York                  16

Los Angeles              13

Chicago                      7

Washington, D.C.      5

Houston                     5

Dallas, Fort Worth     4

Detroit                       4

Miami                        4

Phoenix                    4

Philadelphia             4

San Francisco          3

Boston                     3

Atlanta                     3

Calculate the mean and standard deviation for this data set (in millions of dollars). (Round your answers to three decimal places.) mean $ million standard deviation $ million

Thus, the mean is $5.769 million and the standard deviation is $3.905 million.

Learn more about calculating the mean and standard deviation at brainly.com/question/1580527

#SPJ1

6 0
1 year ago
Other questions:
  • Which set best describes the number(-16)?
    7·1 answer
  • What is his error? O He placed the decimal point incorrectly when dividing. O He placed the decimal point incorrectly when multi
    14·2 answers
  • Solve for x using quadratic formula x2 10x=9
    11·1 answer
  • Thea has a key on her calculator marked $\textcolor{blue}{\bf\circledast}$. If an integer is displayed, pressing the $\textcolor
    8·1 answer
  • Mr. Grey is planning to fly an airplane from Smithville straight to Sandia. The distance from Smithville to Sandia is 1.5 inches
    13·1 answer
  • What is the first step in solving the following equation:<br><br> −1\2x − 33 = 33
    7·2 answers
  • Solve and receive brain list ​
    9·1 answer
  • Round to the nearest cent. $0.435
    7·2 answers
  • What is state Income Tax
    8·1 answer
  • Find the imaginary and real parts of ​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!