Answer:
B) expression of inappropriate gene products
Explanation:
Most of the cancers are caused when a normal gene that code for one or other proteins involved in the regulation of the cell cycle is mutated. The mutated gene may cause the production of the faulty gene products. For example, the overproduction of products of the protooncogene that push cells through the cell cycle leads to tumor formation. Likewise, when the tumor suppressor genes are not able to produce enough product to prevent progression through the cell cycle, cancer may develop.
Answer:
the rhythm of heart contractions.
Explanation:
In Human anatomy, cardiac cycle can be defined as a complete heartbeat of the human heart which comprises of sequential alternating contraction and relaxation of the atria and ventricles, therefore causing blood to flow unidirectionally (one direction) throughout the human body.
Generally, the cardiac cycle occurs in two (2) stages;
1. Diastole : in this stage, the ventricles is relaxed and would be filled with blood.
2. Systole: at this stage, the muscles contracts and thus, allow blood to be pushed through the atria.
An electrocardiogram (ECG) provides information about the rhythm of heart contractions.
Additionally, the right atrioventricular valve (AV) also referred to as the tricuspid valve is located on the right dorsal side of the human heart. The right atrioventricular valve (AV) comprises of three (3) leaflets (flaps) which opens and closes in order to allow for the flow of blood from the right atrium of the human heart to the right ventricle. Also, the right atrioventricular valve is saddled with the responsibility of preventing blood from flowing backward in the mammalian heart.
An example of a missense mutation in a protein-encoding gene would most likely be a neutral mutation is option B: replacement of a polar amino acid with another polar amino acid at the protein's surface.
A frequent and well-known example of a missense mutation is the blood condition sickle-cell anemia. Missense mutations exist in the DNA at a single location in sickle-cell anemia patients. A different amino acid is required in this missense mutation, which also alters the overall structure of the protein. Similarly, replacement of a polar amino acid by another polar Ami no acid at the protein's surface is a missense mutation causing change in a single site.
A neutral mutation is one whose fixation is unrelated to natural selection. Therefore, the independence of a mutation's fixation from natural selection can be used to define the selective neutrality of a mutation.
To know more about mutations, refer to the following link:
brainly.com/question/20407521
#SPJ4
Complete question is:
Which example of a missense mutation in a protein-encoding gene would most likely be a neutral mutation?
a) Replacement of a polar amino acid with a nonpolar amino acid at the protein's outer surface
b) Replacement of a polar amino acid with another polar amino acid at the protein's surface
c) Replacement of a polar amino acid with another polar amino acid in the protein's interior
d) Replacement of a polar amino acid with a nonpolar amino acid in the protein's interior
A gene contains the genetic instructions for making proteins.