Answer: 0.9844
Step-by-step explanation:
given data:
sample size n = 6
It’s assumed that half the population are male and the remaining half are females
F = 1/2
M = 1/2
the probability that the investigator would draw altleats one male
P ( x ≥ 1 ) =
= 1 - ( 0.5 ) ^ 6
= ( 0.5 )^6
= 0.9844
Answer:
AB = 3.16 units
Step-by-step explanation:
Given:
A(3, -1) and B(6, 0)
To Find:
AB = ?
Solution:
AB = root{(x2 - x1)^2 + (y2 - y1)^2}
AB = root{(6 - 3)^2 + (0 - (-1))^2}
AB = root{(3)^2 + (0 + 1)^2}
AB = root{9 + (1)^2}
AB = root{9 + 1}
AB = root 10
Therefore, AB = 3.16 units
PLEASE MARK ME AS BRAINLIEST!!!
Problem 1
<h3>Answer: False</h3>
---------------------------------
Explanation:
The notation (f o g)(x) means f( g(x) ). Here g(x) is the inner function.
So,
f(x) = x+1
f( g(x) ) = g(x) + 1 .... replace every x with g(x)
f( g(x) ) = 6x+1 ... plug in g(x) = 6x
(f o g)(x) = 6x+1
Now let's flip things around
g(x) = 6x
g( f(x) ) = 6*( f(x) ) .... replace every x with f(x)
g( f(x) ) = 6(x+1) .... plug in f(x) = x+1
g( f(x) ) = 6x+6
(g o f)(x) = 6x+6
This shows that (f o g)(x) = (g o f)(x) is a false equation for the given f(x) and g(x) functions.
===============================================
Problem 2
<h3>Answer: True</h3>
---------------------------------
Explanation:
Let's say that g(x) produced a number that wasn't in the domain of f(x). This would mean that f( g(x) ) would be undefined.
For example, let
f(x) = 1/(x+2)
g(x) = -2
The g(x) function will always produce the output -2 regardless of what the input x is. Feeding that -2 output into f(x) leads to 1/(x+2) = 1/(-2+2) = 1/0 which is undefined.
So it's important that the outputs of g(x) line up with the domain of f(x). Outputs of g(x) must be valid inputs of f(x).
Answer:
Yes, the average speed for the entire trip from A to C is equal to 
Step-by-step explanation:
The average speed of an object is defined as the distance traveled divided by the time elapsed. Velocity is a vector quantity, and average velocity can be defined as the displacement divided by the time. For the special case of straight line motion in the x direction, the average velocity takes the form:

If the beginning and ending velocities for the motion are known, and the acceleration is constant, the average velocity can also be expressed as:

We Know that:

Replacing the values:
