1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SVETLANKA909090 [29]
3 years ago
5

(PLEASE HELP ASAP I REALLY DON’T UNDERSTAND THIS PLEASE EXPLAIN)

Mathematics
1 answer:
Firdavs [7]3 years ago
4 0

Answer:

Intergers

Step-by-step explanation:

A subset is a part of a whole math concept, idea, or sample space.

We need to find what math concept -5 is apart of.

-5 is part of the All Real Numbers section.

-5 is also part of integers as well.

You might be interested in
Describe how the graph of each function differs from the graph of f(x)=|x|. Then determine the domain and range.
Brilliant_brown [7]

A. We can compress the graph of the function f(x)=|x| in the y-direction by multiplying the whole function by a constant C, such that 0 Since 0, the graph of the function g(x)= 0.6|x| is obtained from the graph of the function  f(x)=|x| by compression in the y-direction.

B. We can stretch the graph of the function f(x)=|x| in the y-direction by multiplying the whole function by a constant C, such that C>1. Since 4>1,, the graph of the function g(x)= 4|x-3| is obtained from the graph of the function  f(x)=|x| by compression in the y-direction and translation 3 units to the right.

C. We can flip the graph of the function  f(x)=|x| upside down by multiplying the whole function by −1, then translate 1 unit to the left and 5 units up. Then we will get the function g(x)=-|x+1|+5.

7 0
3 years ago
Gcf of 12x^5y and #2x^6y
Murrr4er [49]
Greatest common factor is 1 for the first one and the second one is also 1
8 0
3 years ago
Evaluate the interval (Calculus 2)
Darya [45]

Answer:

2 \tan (6x)+2 \sec (6x)+\text{C}

Step-by-step explanation:

<u>Fundamental Theorem of Calculus</u>

\displaystyle \int \text{f}(x)\:\text{d}x=\text{F}(x)+\text{C} \iff \text{f}(x)=\dfrac{\text{d}}{\text{d}x}(\text{F}(x))

If differentiating takes you from one function to another, then integrating the second function will take you back to the first with a constant of integration.

Given indefinite integral:

\displaystyle \int \dfrac{12}{1-\sin (6x)}\:\:\text{d}x

\boxed{\begin{minipage}{5 cm}\underline{Terms multiplied by constants}\\\\$\displaystyle \int a\:\text{f}(x)\:\text{d}x=a \int \text{f}(x) \:\text{d}x$\end{minipage}}

If the terms are multiplied by constants, take them outside the integral:

\implies 12\displaystyle \int \dfrac{1}{1-\sin (6x)}\:\:\text{d}x

Multiply by the conjugate of 1 - sin(6x) :

\implies 12\displaystyle \int \dfrac{1}{1-\sin (6x)} \cdot \dfrac{1+\sin(6x)}{1+\sin(6x)}\:\:\text{d}x

\implies 12\displaystyle \int \dfrac{1+\sin(6x)}{1-\sin^2(6x)} \:\:\text{d}x

\textsf{Use the identity} \quad \sin^2 x+ \cos^2 x=1:

\implies \sin^2 (6x) + \cos^2 (6x)=1

\implies \cos^2 (6x)=1- \sin^2 (6x)

\implies 12\displaystyle \int \dfrac{1+\sin(6x)}{\cos^2(6x)} \:\:\text{d}x

Expand:

\implies 12\displaystyle \int \dfrac{1}{\cos^2(6x)}+\dfrac{\sin(6x)}{\cos^2(6x)} \:\:\text{d}x

\textsf{Use the identities }\:\: \sec \theta=\dfrac{1}{\cos \theta} \textsf{ and } \tan\theta=\dfrac{\sin \theta}{\cos \theta}:

\implies 12\displaystyle \int \sec^2(6x)+\dfrac{\tan(6x)}{\cos(6x)} \:\:\text{d}x

\implies 12\displaystyle \int \sec^2(6x)+\tan(6x)\sec(6x) \:\:\text{d}x

\boxed{\begin{minipage}{5 cm}\underline{Integrating $\sec^2 kx$}\\\\$\displaystyle \int \sec^2 kx\:\text{d}x=\dfrac{1}{k} \tan kx\:\:(+\text{C})$\end{minipage}}

\boxed{\begin{minipage}{6 cm}\underline{Integrating $ \sec kx \tan kx$}\\\\$\displaystyle \int  \sec kx \tan kx\:\text{d}x= \dfrac{1}{k}\sec kx\:\:(+\text{C})$\end{minipage}}

\implies 12 \left[\dfrac{1}{6} \tan (6x)+\dfrac{1}{6} \sec (6x) \right]+\text{C}

Simplify:

\implies \dfrac{12}{6} \tan (6x)+\dfrac{12}{6} \sec (6x)+\text{C}

\implies 2 \tan (6x)+2 \sec (6x)+\text{C}

Learn more about indefinite integration here:

brainly.com/question/27805589

brainly.com/question/28155016

3 0
2 years ago
Math help help help answer all 4 pls
serious [3.7K]

Answer:

a) 2,350,000,000

b) 25,000,000

c) B

Step-by-step explanation:

a) 2350 X 1,000,000 = 2,350,000,000

b) 25 X 10^6 = 25,000,000

c) sqrt(90000) =300

7 0
3 years ago
Read 2 more answers
Which of the following is not a step in creating a debt payment plan?
bonufazy [111]

Answer: b. Consolidate all credit cards onto a single card with a single interest rate.


Step-by-step explanation: Steps a, c and d are in correct order. First, we have to arrange our debts in order of paying them off. Second, we need to determine how much extra money we have each month that can be contributed to debt payment. And finally, we need to track our progress of paying debt. So, option b is not included in the steps.

Thus, the correct option is b.  Consolidate all credit cards onto a single card with a single interest rate.


4 0
3 years ago
Read 2 more answers
Other questions:
  • Solve the system of equations and choose the correct ordered pair.
    10·2 answers
  • You are a contractor and charge $45 for a site visit plus an additional $24 per hour for each hour you spend working at the site
    9·1 answer
  • What is <br> 935 × 145 × 0 =
    8·2 answers
  • Help!! WILL GIVE BRAINLIEST!!! What is the range of possible sizes for side x? Please explain about the rule as well.....
    15·1 answer
  • There are 12 candidates running for any of 6 distinct positions in a school's student council. In how many different ways could
    14·1 answer
  • PLEASE HELP ME I AM ON A TEST
    7·1 answer
  • 7.
    8·2 answers
  • Simplify -6^2 ÷ 12 - 2(-7). <br> A. -17<br> B. 35<br> C. 11 <br> D. -35
    14·1 answer
  • -3(2h + -5h2) + 2h<br> Simplify the expression
    14·2 answers
  • A clothing store determines that in order to sell x shirts, the price per shirt should be p(x)=100−x dollars. Getting x shirts f
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!