1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svlad2 [7]
3 years ago
14

11. Trisha's Treats, a local bakery, has a

Mathematics
1 answer:
Nady [450]3 years ago
5 0

Answer:

Step-by-step explanation:

You might be interested in
Is this a function or no
adelina 88 [10]

Answer:

function

Step-by-step explanation:

one input has one output, so it is a function

7 0
3 years ago
Read 2 more answers
(Please help) Which answer describes the polynomial?
lbvjy [14]
\bf 3x^3+4x^2-7\quad 
\begin{cases}
3x^3\impliedby &3rd~degree\\
4x^2\impliedby &2nd~degree\\
7\impliedby &0~degree
\end{cases}

notice, there are three terms, therefore is a trinomial.

the term that has the highest degree, has a degree of 3, therefore the degree of the polynomial as a whole is 3, or a cubic degree.

so, is a cubic trinomial.
5 0
2 years ago
The following triangle. check all that apply
Amiraneli [1.4K]

Obtuse and isosceles

Isosceles means that at least two of the sides are congruent or equal.

Obtuse means that one angle of the triangle is greater than 90 degrees.

So, your answer is D and E

:)))

4 0
2 years ago
Read 2 more answers
PLEASE HELP WITH GRAPHING QUESTION ASAP!!
bulgar [2K]

x-int: -0.5; y-int: 1

7 0
3 years ago
Read 2 more answers
Explain how to multiply the following whole numbers 21 x 14
Lesechka [4]

Answer:

\begin{matrix}\space\space&\textbf{2}&\textbf{1}\\ \times \:&1&\textbf{4}\end{matrix}

________

\frac{\begin{matrix}\space\space&\textbf{0}&8&4\\ +&\textbf{2}&1&0\end{matrix}}{\begin{matrix}\space\space&\textbf{2}&9&4\end{matrix}}

Step-by-step explanation:

Given

21\:\times \:14

Line up the numbers

\begin{matrix}\space\space&2&1\\ \times \:&1&4\end{matrix}

Multiply the top number by the bottom number one digit at a time starting with the ones digit left(from right to left right)

Multiply the top number by the bolded digit of the bottom number

\begin{matrix}\space\space&\textbf{2}&\textbf{1}\\ \times \:&1&\textbf{4}\end{matrix}

Multiply the bold numbers:    1×4=4

\frac{\begin{matrix}\space\space&2&\textbf{1}\\ \times \:&1&\textbf{4}\end{matrix}}{\begin{matrix}\space\space&\space\space&4\end{matrix}}

Multiply the bold numbers:    2×4=8

\frac{\begin{matrix}\space\space&\textbf{2}&1\\ \times \:&1&\textbf{4}\end{matrix}}{\begin{matrix}\space\space&8&4\end{matrix}}

Multiply the top number by the bolded digit of the bottom number

\frac{\begin{matrix}\space\space&\textbf{2}&\textbf{1}\\ \times \:&\textbf{1}&4\end{matrix}}{\begin{matrix}\space\space&8&4\end{matrix}}

Multiply the bold numbers:    1×1=1

\frac{\begin{matrix}\space\space&\space\space&2&\textbf{1}\\ \space\space&\times \:&\textbf{1}&4\end{matrix}}{\begin{matrix}\space\space&\space\space&8&4\\ \space\space&\space\space&1&\space\space\end{matrix}}

Multiply the bold numbers:    2×1=2

\frac{\begin{matrix}\space\space&\space\space&\textbf{2}&1\\ \space\space&\times \:&\textbf{1}&4\end{matrix}}{\begin{matrix}\space\space&\space\space&8&4\\ \space\space&2&1&\space\space\end{matrix}}

Add the rows to get the answer. For simplicity, fill in trailing zeros.

\frac{\begin{matrix}\space\space&\space\space&2&1\\ \space\space&\times \:&1&4\end{matrix}}{\begin{matrix}\space\space&0&8&4\\ \space\space&2&1&0\end{matrix}}

adding portion

\begin{matrix}\space\space&0&8&4\\ +&2&1&0\end{matrix}

Add the digits of the right-most column: 4+0=4

\frac{\begin{matrix}\space\space&0&8&\textbf{4}\\ +&2&1&\textbf{0}\end{matrix}}{\begin{matrix}\space\space&\space\space&\space\space&\textbf{4}\end{matrix}}

Add the digits of the right-most column: 8+1=9

\frac{\begin{matrix}\space\space&0&\textbf{8}&4\\ +&2&\textbf{1}&0\end{matrix}}{\begin{matrix}\space\space&\space\space&\textbf{9}&4\end{matrix}}

Add the digits of the right-most column: 0+2=2

\frac{\begin{matrix}\space\space&\textbf{0}&8&4\\ +&\textbf{2}&1&0\end{matrix}}{\begin{matrix}\space\space&\textbf{2}&9&4\end{matrix}}

Therefore,

\begin{matrix}\space\space&\textbf{2}&\textbf{1}\\ \times \:&1&\textbf{4}\end{matrix}

________

\frac{\begin{matrix}\space\space&\textbf{0}&8&4\\ +&\textbf{2}&1&0\end{matrix}}{\begin{matrix}\space\space&\textbf{2}&9&4\end{matrix}}

6 0
3 years ago
Other questions:
  • Which of the following is written as a rational function?
    8·1 answer
  • Which of the following is true about the graph of f (x)= 7x
    7·1 answer
  • 5. How many solutions does this system of linear
    7·1 answer
  • How do I solve this?
    10·1 answer
  • How are u supposed to find the area without knowing what x is?
    6·1 answer
  • GEOMETRY
    10·1 answer
  • Find the approximate area of the shaded region below, consisting of a right triangle with a circle cut out of it. Use 3.14 as an
    11·1 answer
  • Please Help!!! (i'll give the best answer brainliest)
    13·2 answers
  • A hotel currently has enough room to accommodate at most 200 guests per night. It plans to expand its capacity by 12 guests ever
    10·2 answers
  • The bookstore sold m books on Monday and t books on Tuesday. But on Wednesday, r books were
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!