Y = -1/2x - 1
Tell me if you need explanation
person number 60
10 20 30 40 50<u> 60</u>
12 14 36 48<u> 60</u>
It id in both of their times tables.<u />
I'm pretty sure that it's the first one: direct variation; y=4x.
For this case we have the following equation:

By completing squares we have:
Step 1:
Add
on both sides:

Step 2:
We rewrite the equation:

Step 3:
We solve the equation:

Solutions:

Answer:
the next line would be:

The valid conclusions for the manager based on the considered test is given by: Option
<h3>When do we perform one sample z-test?</h3>
One sample z-test is performed if the sample size is large enough (n > 30) and we want to know if the sample comes from the specific population.
For this case, we're specified that:
- Population mean =
= $150 - Population standard deviation =
= $30.20 - Sample mean =
= $160 - Sample size = n = 40 > 30
- Level of significance =
= 2.5% = 0.025 - We want to determine if the average customer spends more in his store than the national average.
Forming hypotheses:
- Null Hypothesis: Nullifies what we're trying to determine. Assumes that the average customer doesn't spend more in the store than the national average. Symbolically, we get:

- Alternate hypothesis: Assumes that customer spends more in his store than the national average. Symbolically

where
is the hypothesized population mean of the money his customer spends in his store.
The z-test statistic we get is:

The test is single tailed, (right tailed).
The critical value of z at level of significance 0.025 is 1.96
Since we've got 2.904 > 1.96, so we reject the null hypothesis.
(as for right tailed test, we reject null hypothesis if the test statistic is > critical value).
Thus, we accept the alternate hypothesis that customer spends more in his store than the national average.
Learn more about one-sample z-test here:
brainly.com/question/21477856