
As we know ~
Area of the circle is :

And radius (r) = diameter (d) ÷ 2
[ radius of the circle = half the measure of diameter ]
➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖
<h3>Problem 1</h3>



Now find the Area ~




・ .━━━━━━━†━━━━━━━━━.・
<h3>problem 2</h3>



Bow, calculate the Area ~




・ .━━━━━━━†━━━━━━━━━.・
<h3>Problem 3 </h3>




・ .━━━━━━━†━━━━━━━━━.・
<h3>Problem 4</h3>



now, let's calculate area ~



・ .━━━━━━━†━━━━━━━━━.・
<h3>problem 5</h3>



Now, let's calculate area ~




・ .━━━━━━━†━━━━━━━━━.・
<h3>problem 6</h3>




➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖
7.77777777 repeating
Irrational numbers are:
Numbers that repeat
7.7777777 repeats the number 7 after the decimal
Numbers that CANNOT be written as a simple fraction.
7.7777777 cannot be written as a fraction in simplest form.
Answer = 7.777777777 repeating
~Aamira~
Hope this helped :)
Ming needs to play for 15 hours to get 500 points. They gave him 200 for signing up, so 500-200=300 more points needed. 300 divided by 20= 15 more hours.
Answer:

Step-by-step explanation:
The expression to transform is:
![(\sqrt[6]{x^5})^7](https://tex.z-dn.net/?f=%28%5Csqrt%5B6%5D%7Bx%5E5%7D%29%5E7)
Let's work first on the inside of the parenthesis.
Recall that the n-root of an expression can be written as a fractional exponent of the expression as follows:
![\sqrt[n]{a} = a^{\frac{1}{n}}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Ba%7D%20%3D%20a%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D)
Therefore ![\sqrt[6]{a} = a^{\frac{1}{6}}](https://tex.z-dn.net/?f=%5Csqrt%5B6%5D%7Ba%7D%20%3D%20a%5E%7B%5Cfrac%7B1%7D%7B6%7D%7D)
Now let's replace
with
which is the algebraic form we are given inside the 6th root:
![\sqrt[6]{x^5} = (x^5)^{\frac{1}{6}}](https://tex.z-dn.net/?f=%5Csqrt%5B6%5D%7Bx%5E5%7D%20%3D%20%28x%5E5%29%5E%7B%5Cfrac%7B1%7D%7B6%7D%7D)
Now use the property that tells us how to proceed when we have "exponent of an exponent":

Therefore we get: 
Finally remember that this expression was raised to the power 7, therefore:
[/tex]
An use again the property for the exponent of a exponent:
This is in its simplest form.
There are no like terms to an operation