Answer:
rectangle and a square
Step-by-step explanation:
First, you must know these formula d(e^f(x) = f'(x)e^x dx, e^a+b=e^a.e^b, and d(sinx) = cosxdx, secx = 1/ cosx
(secx)dy/dx=e^(y+sinx), implies <span>dy/dx=cosx .e^(y+sinx), and then
</span>dy=cosx .e^(y+sinx).dx, integdy=integ(cosx .e^(y+sinx).dx, equivalent of
integdy=integ(cosx .e^y.e^sinx)dx, integdy=e^y.integ.(cosx e^sinx)dx, but we know that d(e^sinx) =cosx e^sinx dx,
so integ.d(e^sinx) =integ.cosx e^sinx dx,
and e^sinx + C=integ.cosx e^sinxdx
finally, integdy=e^y.integ.(cosx e^sinx)dx=e^2. (e^sinx) +C
the answer is
y = e^2. (e^sinx) +C, you can check this answer to calculate dy/dx
Answer: The expected value of the water depth is 4.5 m.
Step-by-step explanation:
Let x be a random variable which is uniformly distributed in interval [a,b] .
Then the mean of the distribution is ghiven by :-

Given : While conducting experiments, a marine biologist selects water depths from a uniformly distributed collection that vary between 2.00 m and 7.00 m.
Then, the expected value of the water depth = 
Hence, the expected value of the water depth is 4.5 m.
The answer is none of those because you find the median of 51 which is Q2 then the lower median is 34.5 and the upper median is 73.4 then you subtract 73.5-34.5=39