Answer:
the answer is <em><u>X</u></em><em><u>=</u></em><em><u>-</u></em><em><u>3</u></em>
<em><u>1</u></em><em><u>)</u></em><em><u> </u></em><u>5</u><em><u>x</u></em><u>^</u><u>2</u><u>+</u><u>1</u><u>7</u><em><u>x</u></em><u>+</u><u>1</u><u>4</u><u>=</u><u>0</u>
<u>2</u><u>)</u><u>5</u><em><u>x</u></em><u>^</u><u>2</u><u>+</u><u>1</u><u>7</u><em><u>x</u></em><em><u>=</u></em><em><u>-</u></em><em><u>1</u></em><em><u>4</u></em><em><u>+</u></em><em><u>0</u></em>
<em><u>3</u></em><em><u>)</u></em><em><u>2</u></em><em><u>5</u></em><em><u>x</u></em><em><u>+</u></em><em><u>1</u></em><em><u>7</u></em><em><u>x</u></em><em><u>=</u></em><em><u>-</u></em><em><u>1</u></em><em><u>4</u></em>
<em><u>4</u></em><em><u>)</u></em><em><u>4</u></em><em><u>2</u></em><em><u>x</u></em><em><u>=</u></em><em><u>-</u></em><em><u>1</u></em><em><u>4</u></em>
<em><u>5</u></em><em><u>)</u></em><em><u>4</u></em><em><u>2</u></em><em><u>x</u></em><em><u>/</u></em><em><u>-</u></em><em><u>1</u></em><em><u>4</u></em>
<em><u>6</u></em><em><u>)</u></em><em><u>x</u></em><em><u>=</u></em><em><u>-</u></em><em><u>3</u></em>
We know, Volume of a Sphere = 4/3 πr³
v = 4/3 * 3.14 * 18³
v = 4.186 * 5832
v = 24,416.64 cm³
Volume of a Sphere = 4/3 πr³
v = 4/3 * 3.14 * 12³
v = 4.186 * 1728
v = 7234.56 cm³
Difference = 24,416.64 - 7234.56 = 17182.08
In short, Your Answer would be: 17182.08 cm³
Hope this helps!
You have to make a problem that could happen in the real world that multiplication of a fracton using product between 10 and 15
Answer:
C = 210cm^3
Step-by-step explanation:
We can get an estamate when we use the equation L x H x W = x/2
This shows 8 x 8 x 7, then divide by 2 = 224cm^3
The reason it is slightly less could be the facts the teachers want you to remember this one.
For right side prism the equation is (1/2)b x h x H
which means;
The volume of a triangular prism can be found by multiplying the base times the height. Both of the pictures of the Triangular prisms below illustrate the same formula. The formula, in general, is the area of the base (the red triangle in the picture on the right) times the height,h.
We use the side and base that surrounds the right side as (1/2)base and as side to find area then use the H as the height being the 7.
Answer:
Answer = d. Chi-Square Goodness of Fit
Step-by-step explanation:
A decision maker may need to understand whether an actual sample distribution matches with a known theoretical probability distribution such as Normal distribution and so on. The Goodness-of-fit Test is a type of Chi-Square test that can be used to determine if a data set follows a Normal distribution and how well it fits the distribution. The Chi-Square test for Goodness-of-fit enables us to determine the extent to which theoretical probability distributions coincide with empirical sample distribution. To apply the test, a particular theoretical distribution is first hypothesized for a given population and then the test is carried out to determine whether or not the sample data could have come from the population of interest with hypothesized theoretical distribution. The observed frequencies or values come from the sample and the expected frequencies or values come from the theoretical hypothesized probability distribution. The Goodness-of-fit now focuses on the differences between the observed values and the expected values. Large differences between the two distributions throw doubt on the assumption that the hypothesized theoretical distribution is correct and small differences between the two distributions may be assumed to be resulting from sampling error.