1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Daniel [21]
3 years ago
9

What is the tan invers of 3i/-1-i​

Mathematics
1 answer:
postnew [5]3 years ago
6 0

<em>z</em> = 3<em>i</em> / (-1 - <em>i</em> )

<em>z</em> = 3<em>i</em> / (-1 - <em>i</em> ) × (-1 + <em>i</em> ) / (-1 + <em>i</em> )

<em>z</em> = (3<em>i</em> × (-1 + <em>i</em> )) / ((-1)² - <em>i</em> ²)

<em>z</em> = (-3<em>i</em> + 3<em>i</em> ²) / ((-1)² - <em>i</em> ²)

<em>z</em> = (-3 - 3<em>i </em>) / (1 - (-1))

<em>z</em> = (-3 - 3<em>i </em>) / 2

Note that this number lies in the third quadrant of the complex plane, where both Re(<em>z</em>) and Im(<em>z</em>) are negative. But arctan only returns angles between -<em>π</em>/2 and <em>π</em>/2. So we have

arg(<em>z</em>) = arctan((-3/2)/(-3/2)) - <em>π</em>

arg(<em>z</em>) = arctan(1) - <em>π</em>

arg(<em>z</em>) = <em>π</em>/4 - <em>π</em>

arg(<em>z</em>) = -3<em>π</em>/4

where I'm taking arg(<em>z</em>) to have a range of -<em>π</em> < arg(<em>z</em>) ≤ <em>π</em>.

You might be interested in
I need help asap please? and this is for math? what is 4-5+8x8/4?
Zanzabum

Answer:

the answer is 50 hope this helps

Step-by-step explanation:

4-5=-1

-1+8=7

7+8x8= ?

15x8=120

120/4=50

3 0
2 years ago
Read 2 more answers
Determine ƒ(a + h) for ƒ(x) = 2x3.
Kazeer [188]
F(a+h)=2(a+h)³=2(a³+3a²h+3h²a+h³)
the second choice is the correct answer.
4 0
3 years ago
Y''+y'+y=0, y(0)=1, y'(0)=0
mars1129 [50]

Answer:

y=e^{\frac{-t}{2}}\left ( \cos\left ( \frac{\sqrt{3}t}{2} \right )+\frac{1}{\sqrt{3}}\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right )

Step-by-step explanation:

A second order linear , homogeneous ordinary differential equation has form ay''+by'+cy=0.

Given: y''+y'+y=0

Let y=e^{rt} be it's solution.

We get,

\left ( r^2+r+1 \right )e^{rt}=0

Since e^{rt}\neq 0, r^2+r+1=0

{ we know that for equation ax^2+bx+c=0, roots are of form x=\frac{-b\pm \sqrt{b^2-4ac}}{2a} }

We get,

y=\frac{-1\pm \sqrt{1^2-4}}{2}=\frac{-1\pm \sqrt{3}i}{2}

For two complex roots r_1=\alpha +i\beta \,,\,r_2=\alpha -i\beta, the general solution is of form y=e^{\alpha t}\left ( c_1\cos \beta t+c_2\sin \beta t \right )

i.e y=e^{\frac{-t}{2}}\left ( c_1\cos\left ( \frac{\sqrt{3}t}{2} \right )+c_2\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right )

Applying conditions y(0)=1 on e^{\frac{-t}{2}}\left ( c_1\cos\left ( \frac{\sqrt{3}t}{2} \right )+c_2\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right ), c_1=1

So, equation becomes y=e^{\frac{-t}{2}}\left ( \cos\left ( \frac{\sqrt{3}t}{2} \right )+c_2\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right )

On differentiating with respect to t, we get

y'=\frac{-1}{2}e^{\frac{-t}{2}}\left ( \cos\left ( \frac{\sqrt{3}t}{2} \right )+c_2\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right )+e^{\frac{-t}{2}}\left ( \frac{-\sqrt{3}}{2} \sin \left ( \frac{\sqrt{3}t}{2} \right )+c_2\frac{\sqrt{3}}{2}\cos\left ( \frac{\sqrt{3}t}{2} \right )\right )

Applying condition: y'(0)=0, we get 0=\frac{-1}{2}+\frac{\sqrt{3}}{2}c_2\Rightarrow c_2=\frac{1}{\sqrt{3}}

Therefore,

y=e^{\frac{-t}{2}}\left ( \cos\left ( \frac{\sqrt{3}t}{2} \right )+\frac{1}{\sqrt{3}}\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right )

3 0
3 years ago
Sum of -6x^2-1 and x+9
Bumek [7]

Answer:

-6x^2+x+8

Step-by-step explanation:

9+-1=8

3 0
3 years ago
Read 2 more answers
Anyone want to t a l k I’m bored.
scoundrel [369]

Answer:

okay sure what would you like to talk about?

Step-by-step explanation:

6 0
2 years ago
Other questions:
  • A follow-up study will be conducted with a sample of 20 people from the 300 people who responded yes (support) and no (do not su
    13·1 answer
  • Which equation represents the partial sum of the geometric series?
    10·2 answers
  • Eleven times the quantity of a number plus four
    11·2 answers
  • A rectangular lamina of uniform density is situated with opposite corners at (0,0) and (15,4). calculate its radii of gyration a
    13·1 answer
  • How do you solve this?
    15·1 answer
  • Someone knows what number multiplied twice by the same can give me results 130!!!! Help plis plisss
    7·2 answers
  • <img src="https://tex.z-dn.net/?f=%20%5Cfrac%7B%3F%7D%7B%3F%7D%20" id="TexFormula1" title=" \frac{?}{?} " alt=" \frac{?}{?} " al
    10·2 answers
  • Someone Please Help a
    14·1 answer
  • Estimate the number of pints in 445 fluid ounces. Explain your work.​
    15·1 answer
  • Find from first principles the derivative of f:x maps to (x+2)all squared
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!