The quadrilaterals whose consecutive and opposite angles are always congruent are the square and the rectangle. All of the angles of the square and the rectangle are 90 degrees. The consecutive angles of the parallelogram and the rhombus are not equal.
if you are looking for the solution then is <em>Infinitely many solutions</em>
Answer:
44
Step-by-step explanation:
Parenthesis
Exponents
Multiply
Divide
Add
Subtract
First we need to do the work inside the parenthesis that are in the boxed parenthesis
3 + 1 = 4
4 * 5 = 20
Now we multiply
20 * 2 = 40
Now we add
40 + 4 = 44
Best Of Luck,
- I.A. -
Answer:
Q13. y = sin(2x – π/2); y = - 2cos2x
Q14. y = 2sin2x -1; y = -2cos(2x – π/2) -1
Step-by-step explanation:
Question 13
(A) Sine function
y = a sin[b(x - h)] + k
y = a sin(bx - bh) + k; bh = phase shift
(1) Amp = 1; a = 1
(2) The graph is symmetrical about the x-axis. k = 0.
(3) Per = π. b = 2
(4) Phase shift = π/2.
2h =π/2
h = π/4
The equation is
y = sin[2(x – π/4)} or
y = sin(2x – π/2)
B. Cosine function
y = a cos[b(x - h)] + k
y = a cos(bx - bh) + k; bh = phase shift
(1) Amp = 1; a = 1
(2) The graph is symmetrical about the x-axis. k = 0.
(3) Per = π. b = 2
(4) Reflected across x-axis, y ⟶ -y
The equation is y = - 2cos2x
Question 14
(A) Sine function
(1) Amp = 2; a = 2
(2) Shifted down 1; k = -1
(3) Per = π; b = 2
(4) Phase shift = 0; h = 0
The equation is y = 2sin2x -1
(B) Cosine function
a = 2, b = -1; b = 2
Phase shift = π/2; h = π/4
The equation is
y = -2cos[2(x – π/4)] – 1 or
y = -2cos(2x – π/2) - 1