The answer is C, 2/3. 1, 3, 5, 6, 7, 9, 11, and 12 are possible draws. 8/12 is equal to 2/3!
Let
A------> <span>(1, 4)
B------> (6, 4)
C-----> (6,1)
we know that
In </span><span>a right triangle there are two legs and one hypotenuse
</span><span>
step 1
find the distance AB
d=</span>√[(y2-y1)²+(x2-x1)²]------> d=√[(4-4)²+(6-1)²]-----> d=√25----> 5
AB=5 units
step 2
find the distance BC
d=√[(y2-y1)²+(x2-x1)²]------> d=√[(1-4)²+(6-6)²]-----> d=√9----> 3
BC=3 units
step 3
find the distance AC
d=√[(y2-y1)²+(x2-x1)²]------> d=√[(1-4)²+(6-1)²]-----> d=√34----> 5.83
AC=5.83 units
therefore
the two legs are
AB=5 units
BC=3 units
the hypotenuse is
AC=5.83 units
the answer is<span>
the length of the longer leg is AB=5 units
</span>
see the attached figure
Answer:
Step-by-step explanation: 1.yes 2.no 3.yes 4.no
bearing in mind that, on the III Quadrant, sine as well as cosine are both negative, and that hypotenuse is never negative, so, if the sine is -4/5, the negative number must be the numerator, so sin(x) = (-4)/5.
![\bf sin(x)=\cfrac{\stackrel{opposite}{-4}}{\stackrel{hypotenuse}{5}}\impliedby \textit{let's find the \underline{adjacent}} \\\\\\ \textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies \sqrt{c^2-b^2}=a \qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases} \\\\\\ \pm\sqrt{5^2-(-4)^2}=a\implies \pm\sqrt{9}=a\implies \pm 3=a \\\\\\ \stackrel{III~Quadrant}{-3=a}~\hfill cos(x)=\cfrac{\stackrel{adjacent}{-3}}{\stackrel{hypotenuse}{5}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20sin%28x%29%3D%5Ccfrac%7B%5Cstackrel%7Bopposite%7D%7B-4%7D%7D%7B%5Cstackrel%7Bhypotenuse%7D%7B5%7D%7D%5Cimpliedby%20%5Ctextit%7Blet%27s%20find%20the%20%5Cunderline%7Badjacent%7D%7D%20%5C%5C%5C%5C%5C%5C%20%5Ctextit%7Busing%20the%20pythagorean%20theorem%7D%20%5C%5C%5C%5C%20c%5E2%3Da%5E2%2Bb%5E2%5Cimplies%20%5Csqrt%7Bc%5E2-b%5E2%7D%3Da%20%5Cqquad%20%5Cbegin%7Bcases%7D%20c%3Dhypotenuse%5C%5C%20a%3Dadjacent%5C%5C%20b%3Dopposite%5C%5C%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20%5Cpm%5Csqrt%7B5%5E2-%28-4%29%5E2%7D%3Da%5Cimplies%20%5Cpm%5Csqrt%7B9%7D%3Da%5Cimplies%20%5Cpm%203%3Da%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7BIII~Quadrant%7D%7B-3%3Da%7D~%5Chfill%20cos%28x%29%3D%5Ccfrac%7B%5Cstackrel%7Badjacent%7D%7B-3%7D%7D%7B%5Cstackrel%7Bhypotenuse%7D%7B5%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf tan\left(\cfrac{\theta}{2}\right)= \begin{cases} \pm \sqrt{\cfrac{1-cos(\theta)}{1+cos(\theta)}} \\\\ \cfrac{sin(\theta)}{1+cos(\theta)}\qquad \leftarrow \textit{let's use this one} \\\\ \cfrac{1-cos(\theta)}{sin(\theta)} \end{cases} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20tan%5Cleft%28%5Ccfrac%7B%5Ctheta%7D%7B2%7D%5Cright%29%3D%20%5Cbegin%7Bcases%7D%20%5Cpm%20%5Csqrt%7B%5Ccfrac%7B1-cos%28%5Ctheta%29%7D%7B1%2Bcos%28%5Ctheta%29%7D%7D%20%5C%5C%5C%5C%20%5Ccfrac%7Bsin%28%5Ctheta%29%7D%7B1%2Bcos%28%5Ctheta%29%7D%5Cqquad%20%5Cleftarrow%20%5Ctextit%7Blet%27s%20use%20this%20one%7D%20%5C%5C%5C%5C%20%5Ccfrac%7B1-cos%28%5Ctheta%29%7D%7Bsin%28%5Ctheta%29%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

Answer:
-1/5
Step-by-step explanation:
make them have the same denominator by multiplying -1/2 by 5 on the bottom and top which then gives you -5/10 + 3/10 that then gives your -2/10 which reduces to -1/5