Answer: the minimum spacing that must be there between two objects on the earth's surface if they are to be resolved as distinct objects by this telescope 6.45 cm
Explanation:
Given that;
diameter of the mirror d = 1.7 m
height h = 180 km = 180 × 10³ m
wavelength λ = 500 nm = 5 × 10⁻⁹ m
Now Angular separation from the peak of the central maximum is expressed as;
sin∅= 1.22 λ / d
sin∅ = (1.22 × 5 × 10⁻⁹) / 1.7
sin∅ = 3.588 × 10⁻⁷
we know that;
sin∅ = object separation / distance from telescope
object separation =
sin∅ × distance from telescope
object separation = 3.588 × 10⁻⁷ × 180 × 10³
object separation =6.45 × 10⁻² m
then we convert to centimeter
object separation = 6.45 cm
Therefore the minimum spacing that must be there between two objects on the earth's surface if they are to be resolved as distinct objects by this telescope 6.45 cm
The amount of heat required is B) 150 J
Explanation:
The amount of heat energy required to increase the temperature of a substance is given by the equation:

where:
m is the mass of the substance
C is the specific heat capacity of the substance
is the change in temperature of the substance
For the sample of copper in this problem, we have:
m = 25 g (mass)
C = 0.39 J/gºC (specific heat capacity of copper)
(change in temperature)
Substituting, we find:

So, the closest answer is B) 150 J.
Learn more about specific heat capacity:
brainly.com/question/3032746
brainly.com/question/4759369
#LearnwithBrainly
A transverse wave. A wave is a disturbance that transmits energy from one place to another by the particles of the medium.
Answer:
The body must be moving with a constant non zero acceleration.
Explanation:
Force produces acceleration on any mass it is applied on. The acceleration produced depends on the magnitude and direction of the force. For this block being dragged by a constant horizontal force, The body will undergo a constant non-zero acceleration that will steadily increase its velocity along the direction of the force.