Answer:
The answer to your question is the last choice.
Step-by-step explanation:
The first column represents the x
The second column represents the y
The third column represents the z
The last column represents the independent term
The first line represents the first equation
The second line represents the second equation
The third line represents the last equation
From the previous information, we conclude that the answer is the last choice.
I will come back to this when I am older
We have proven that the trigonometric identity [(tan θ)/(1 - cot θ)] + [(cot θ)/(1 - tan θ)] equals 1 + (secθ * cosec θ)
<h3>How to solve Trigonometric Identities?</h3>
We want to prove the trigonometric identity;
[(tan θ)/(1 - cot θ)] + [(cot θ)/(1 - tan θ)] = 1 + sec θ
The left hand side can be expressed as;
[(tan θ)/(1 - (1/tan θ)] + [(1/tan θ)/(1 - tan θ)]
⇒ [tan²θ/(tanθ - 1)] - [1/(tan θ(tanθ - 1)]
Taking the LCM and multiplying gives;
(tan³θ - 1)/(tanθ(tanθ - 1))
This can also be expressed as;
(tan³θ - 1³)/(tanθ(tanθ - 1))
By expansion of algebra this gives;
[(tanθ - 1)(tan²θ + tanθ.1 + 1²)]/[tanθ(tanθ(tanθ - 1))]
Solving Further gives;
(sec²θ + tanθ)/tanθ
⇒ sec²θ * cotθ + 1
⇒ (1/cos²θ * cos θ/sin θ) + 1
⇒ (1/cos θ * 1/sin θ) + 1
⇒ 1 + (secθ * cosec θ)
Read more about Trigonometric Identities at; brainly.com/question/7331447
#SPJ1
Answer:
A. Subtract 6 to both sides.
The slope should be 3/2, since you rise 3 and go over 2