Answer:
2.62
Step-by-step explanation:
![log_{b} \frac{b^{2}x^{\frac{5}{2} }}{\sqrt{y}}](https://tex.z-dn.net/?f=log_%7Bb%7D%20%5Cfrac%7Bb%5E%7B2%7Dx%5E%7B%5Cfrac%7B5%7D%7B2%7D%20%7D%7D%7B%5Csqrt%7By%7D%7D)
First, write the square root as exponent.
![log_{b} \frac{b^{2}x^{\frac{5}{2} }}{y^{\frac{1}{2}}}](https://tex.z-dn.net/?f=log_%7Bb%7D%20%5Cfrac%7Bb%5E%7B2%7Dx%5E%7B%5Cfrac%7B5%7D%7B2%7D%20%7D%7D%7By%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D)
Move the denominator to the numerator and negate the exponent.
![log_{b}(b^{2}x^{\frac{5}{2}}y^{-\frac{1}{2}})](https://tex.z-dn.net/?f=log_%7Bb%7D%28b%5E%7B2%7Dx%5E%7B%5Cfrac%7B5%7D%7B2%7D%7Dy%5E%7B-%5Cfrac%7B1%7D%7B2%7D%7D%29)
Use log product property.
![log_{b}(b^{2}) + log_{b}(x^{\frac{5}{2}}) + log_{b}(y^{-\frac{1}{2}})](https://tex.z-dn.net/?f=log_%7Bb%7D%28b%5E%7B2%7D%29%20%2B%20log_%7Bb%7D%28x%5E%7B%5Cfrac%7B5%7D%7B2%7D%7D%29%20%2B%20log_%7Bb%7D%28y%5E%7B-%5Cfrac%7B1%7D%7B2%7D%7D%29)
Use log exponent property.
![2 log_{b}(b) + {\frac{5}{2}}log_{b}(x) - {\frac{1}{2}}log_{b}(y)](https://tex.z-dn.net/?f=2%20log_%7Bb%7D%28b%29%20%2B%20%7B%5Cfrac%7B5%7D%7B2%7D%7Dlog_%7Bb%7D%28x%29%20-%20%7B%5Cfrac%7B1%7D%7B2%7D%7Dlog_%7Bb%7D%28y%29)
Substitute values.
![2(1) + \frac{5}{2}(0.36) - \frac{1}{2}(0.56) \\2.62](https://tex.z-dn.net/?f=2%281%29%20%2B%20%5Cfrac%7B5%7D%7B2%7D%280.36%29%20-%20%5Cfrac%7B1%7D%7B2%7D%280.56%29%20%5C%5C2.62)
Answer:
2
Step-by-step explanation:
The degree of the polynomial is the highest exponent of an expression. When more than one variable is present, its is the sum of exponents on one term in the expression.
The polynomial has terms xy, 3x^2, -7 and x. The term with the highest exponent sum is xy or 3x^2. Both have degree 2. The degree of the polynomial is 2.
A is correct.
-8, -4, 0, 2
-|-4| becomes -(4) which becomes -4.
Answer: 60
Step-by-step explanation: